fbpx

สายน้ำทิพย์ วางใจใช้ 3D Printer กับ 3DD

สายน้ำทิพย์ วางใจใช้ 3D Printer กับ 3DD

ทางเราขอขอบคุณคุณโน๊ต จากสายน้ำทิตย์ Dental Labs แลปทันตกรรมที่ใหญ่ที่สุดแห่งหนึ่งในประเทศไทย ที่วางใจให้เครื่อง 3D Printer เพื่องานทันตกรรม
ทางสายน้ำทิพย์มีการปรับตัวให้ทันยุกต์ทันสมัยเกี่ยวกับด้าน Digital Dentistry ซึ่งปัจจุบันเริ่มเป็นกระแสหลัก จากที่เห็นในต่างประเทศที่ USA, ยุโรป, ญี่ปุ่นและจีน ทางแลปเริ่มมีการใช้ 3D Printer มา 3-4ปีแล้ว ตอนนี้มีซื้อเครื่องมาเสริมทัพ พร้อมทีมทำไฟล์ Digital ใครต้องการงานคุณภาพติดต่อ สายน้ำทิพย์เดนตัลแลป

คุณโน๊ตกับงานที่พิมพื Mask Fitter ที่ได้ครอบผ้าปิดปากอนามัย Mask Fitter นี้เป็นจะมี Shape เฉพาะเจาะจงกับคนนั้น ซึ่งเกิดสารการสแกน 3มิติ

คุณโน๊ต ไว้ใจเลือกเครื่องพิมพ์ 3มิติ ระบบ SLA จากยี่ห้อ Formlabs โดยเริ่มจาก Form 2 และ Form 3 ซึ่งเป็นเครื่องล่าสุดของ Formlabs.
Formlabs Form 3B

งานที่พิมพ์จากเครื่อง
อาคารของ สายน้ำทิพย์
งานทันตกรรม จากเครื่อง 3D Printer
โมเดลที่พิมพ์จาก Formlabs Form 3B

Mask Fitter เข้ารูปหน้าของแต่ละคนด้วย 3D Scanner/ 3D Printer

Mask Fitter เข้ารูปหน้าของแต่ละคนด้วย 3D Scanner/ 3D Printer

เวลาไปหาหมอฟัน เราจะเห็นภาพจำอยู่แล้วว่าหมอจะใช้หน้ากากอนามัย มีกันหลายแบบหลายแนว มีหลายขนาดเล็ก-กลาง-ใหญ่ แต่ไม่มีแบบไหนเลยที่เราพอดีกับหน้าเรา 100% ยิ่งช่วงที่มีการระบาดของเชื้อ Covid-19 การป้องกันละอองในอากาศยิ่งเป็นเรื่องสำคัญ

ปกติเวลาเราใส่หน้ากากอนามัย ยังจะมีช่องว่างให้ละออง เล็ดลอด เข้ามาได้จากช่องว่างที่ไม่ได้แนบกับหน้าเรา ในบทความนี้จะมาแนะนำการทำ Mask Fitter หรือ ครอบแนบกับหน้ากากอนามัย  Mask Fitter ทำแบบคอสตัมเมดให้มีส่วนโค้งเว้าเข้ากับคนๆนั้นเลย โดยใช้ 3D Printer, 3D Scanner

Credit : Sainamthip Dental Labs, Bellus3D

Mask Fitter เข้ากับหน้ากับคนๆนั้นเลย
พิมพ์ Mask Fitter ด้วยวัสดุต่างๆ
งานที่พิมพ์จากเครื่อง

PP Face Design เมื่อทันตกรรม+ศัลยกรรม เปลี่ยนเป็น Digital

PP Face Design เมื่อทันตกรรม+ศัลยกรรม เปลี่ยนเป็น Digital

ทาง 3DD ได้รับความไว้วางใจจากคุณหมอ ทพ.ปกป้อง อมรวิทย์ (Pokpong Amornvit) ในการประยุกต์ใช้ 3D Printer กับ 3D Scanner มาช่วยในการออกแบบใบหน้าให้คนไข้แบบ ดิจิตรอน (Digital Dentistry) ทางคุณหมอต้า ยังเป็นเจ้าของคลีนิค The S ที่สวนพลูอีกด้วย ใครสนใจงานทันตกรรมคุณภาพ ระดับท็อปของทันตกรรมดิจิทัล ลองใช้บริการได้ครับ

แต่ก่อนการจัดฟัน ออกแบบรูปหน้า อาจจะ Simulate เป็นภาพถ่าย 2D แต่ปัจจุบันเทคโลยี 3มิติเข้ามาช่วยสามารถออกแบบ Simulate เป็น 3มิติเลย ลดการใช้พิมพ์โมเดลฟัน, ประหยัดเวลาในการส่งไฟล์โดยส่งเป็นไฟล์ดิจิทัล, แม่นยำกว่าคำนวนโดยคอมพิวเตอร์แทนงานทำมือ และ ลดแรงงานคน
– Intra-Oral Scanner เครื่องสแกน 3มิติในช่องปาก เช่น 3Shape, Itero, Shining3D
– Face and Body 3D Scanner เครื่องสแกนภายนอก สามารถสแกนใบหน้า หรือ ลำตัวของคนไข้ เช่น จาก Shining3D, Siemens
– Dental CAD Software ปัจจุบันมีให้เลือกใช้งานได้หลายตัว เช่น ExoCad, 3Shape
– 3D Printer สำหรับพิมพ์โมเดลฟัน(ควรจะใช้ระบบ SLA), wax สำหรับหล่อ, วัสดุ Bio-Compatible สำหรับผ่าตัว เช่น 3D Systems, Formlabs

ทางคุณหมอปกป้องเลือกใช้
– 3D Scanner จาก Shining3D >> EinScan Pro 2X+
– 3D Printer SLA จาก Formlabs >> Form 3B

ขั้นตอนการทำงานคร่าวๆ
Collect Data – เก็บข้อมูล
– เมื่อคนไข้มาที่หน้าร้าน ถ่ายรูปของคนไข้ กล้องถ่ายรูปทั่วไป >> เราจะได้ไฟล์รูป 2มิติ
– สแกน 3มิติในช่องปาก Intra-Oral Scan >> ได้ไฟล์ฟันบนล่าง 3มิติ
– สแกน 3มิติใบหน้าคนไข้ (Optional) >> จะได้ไฟล์ใบหน้า 3มิติ
– สแกน 3มิติโดยใช้ CT Scan (Optional) กรณีต้องการ Data ในการ Analysis >> ได้ไฟล์กราม กระโหลก 3มิติ

Correct Data เก็บข้อมูล Intral Oral

Process Data – จัดการ ออกแบบ
– ทำไฟล์ที่ได้มา Process สามารถทำได้หลากหลายมาก ตั้งแต่ครอบฟัน, รากเทียม, Clear Aligner, Night Guard, ครอบเซรามิก
แล้วแต่ Software ที่เลือกใช้

ตัวอย่างในรูปใช้ Software ExoCad ทำ Surgical Guide >> สามารถทำไฟล์ที่ได้ไปพิมพ์ต่อด้วยวัสดุ SG ใน 3D Printer

Create Model – สร้างชิ้นงาน
– ใช้ 3D Printer ปัจจุบันราคาไม่แพง ใช้งานได้หลากหลายวัสดุ อีกทั้งพิมพ์ชิ้นงานที่มีความซับซ้อนมากๆได้ เช่น วัสดุทนความร้อน, วัสดุ Wax, วัสดุยืดหยุ่น, วัสดุ Bio-Compatible 3D Printer กำลังจะมาแทนที่เครื่องมืออื่นๆ
– ใช้ CNC กัดเซรามิค, Wax

วัสดุใส่ Bio Compatible จากเครื่องพิมพ์ 3มิติ
โมเดลฟัน
โมเดลฟันสีเนื้อ, Wax สีม่วง สามารถทำไป Cast โลหะ หรือ Press Ceramic
Fitting โมเดลฟัน และ ส่วนปะหน้าฟัน Fitting กันจริงไหม ก่อนทำ Operate

Operate
เมื่อชิ้นงานทันตกรรม ที่ออกแบบถึงมือหมอ หมอจัดากร, ติด, ครอบ หรือแม้กระทั่ว implant ให้คนไข้

 

เก็บตกรูป

Showcase Dental Software
การประยุกต์ใช้เครื่องพิมพ์ 3มิติ กับงานทันตกรรม งานด้าน Medical
Form 3B เครื่องพิมพ์ 3มิติ เพื่องานทันตกรรม
Case ต่างๆที่ยกมา
3D Scan Files
3D Scanner ที่น่าใช้กับงานทันตกรรม

Mapping 2D Files and 3D Files, Intraoral and facial Scanner
3D Facial Scan
เรซิ่นสำหรับการใช้งานแบบต่างๆ

Preview WaxJet400/410 มาดูเครื่องฉีดเทียน 3มิติ ความละเอียดสูง

Preview WaxJet400/410 มาดูเครื่องฉีดเทียน 3มิติ ความละเอียดสูง

ก่อนอื่นบทความนี้เป็นการถอด Video แสดงขั้นตอนการทำงานของเครื่องให้เห็น Process ทั้งหมดเลยก็ว่าได้

Pre-Printing Process

ขั้นแรกออกแบบชิ้นงานที่ต้องการโดยใช้ CAD ในที่นี้เป็นแหวนใช้ Rhino, กรณีเป็นใบพัด ส่วนประกอบเครื่องจักร อาจจะใช้ Solid Work — แล้วแต่ความถนัดของแต่ละบริษัท
Export หรือ Save งานเป็นไฟล์ STL ไฟล์มาตรฐานในการพิมพ์ 3มิติ
Flashforge มี Software Slicer ของตัวเองชื่อ WaxJet สามารถกำหนด Parameter ต่างๆเองได้
import ไฟล์ของเราเข้า เราจะ import กี่ไฟล์ก็ได้ จะพิมพ์ทีเดียว 50 แบบไม่เหมือนกันก็ได้
ในตัวอย่างเป็นการพิมพ์ชิ้นงานเดี๋ยวกัน จำนวนมาก สามารถใส่เพิ่มจำนวนในนี้เลยก็ได้ ในตย. เป็นการ Duplicate ชิ้นงาน 10*11 ทั้งหมด 110 ชิ้น
เครื่องทำการเว้นระยะให้เอง ได้จำนวน 110ชิ้น สามารถกด Submit เข้าสู่กระบวนการพิมพ์ได้เลย (ต่อสายเข้ากับ PC โดยตรง หรือเอา USB ไปเสียบก็ได้)
ไม่จำเป็นต้องพิมพ์งานแบบเดียวกัน แบบละอย่างเลยก็ได้

Printing Process

(ช้าย)เครื่อง WaxJet ฐานพิมพ์จะเคลื่อนที่ซ้ายขวา (ขวา)เครื่องที่คล้ายกัน จะเคลื่อนฐานจะอยู่นิ่ง หัวฉีด Jet จะเคลื่อนที่
พิมพ์ไฟล์เดียวกันขนาดเท่ากัน ความละเอียดเท่ากัน จะเห็นว่า WaxJet สามารถทำงานได้เร็วกว่ามาก
เปรียบเทียบเมื่อพิมพ์เสร็จ
ระบบ SLA พิมพ์ได้เช่นกันแต่ใช้เวลาที่นานกว่า และต้องแกะ Support เมื่อหล่อเสร็จจึงต้องมี Process เก็บงาน

Post-Printing Process

พิมพ์ออกมาเสร็จ แกะออกจากฐานโดยเครื่องทำความร้อนละลายให้ Wax สีขาวนิ่ม จะเห็นว่าเอาออกง่ายมาก (ถ้าเป็นเมื่อไทยใช้ เตาปิ้งลูกชิ้นก็ได้คับ)
หลุดออกที่ละแถว (Wax สีขาวจะมี Glass Transition Temp ช่วย 42-45c)
จัดเรียงใช้ตระเกียงพร้อมต้ม
เตรียมอ่างไว้ 3หลุม เหมือนซักผ้าหลุมแรกสกปรก น้ำกลาง และ น้ำใสสุดท้าย อุณหภูมิที่ใช้ไม่สูงมาก ช่วง 42-45c ค่อนข้างปลอดภัย
ใช้ปั้มลมเติมอากาศ เพื่อให้เกิดการไหลของกระแสน้ำกวนชิ้นงานไปมา ช่วยให้การละลายทำได้เร็วขึ้น
เมื่อล้างเอาส่วน Wax Support สีขาวออกแล้ว ผึ่งให้แห้งและ เข้าขั้นตอนติดก้านเทียน
เอาไปติดต้นเทียนเลย
เตรียมเทปูน ทำเหมือนขั้นตอนปกติเลย จะเห็นว่าโรงงานที่ทำงานกันอยู่ไม่ต้องเปลี่ยนขั้นตอนการทำงานเลย แทนที่จะฉีดเทียนตามโมล เรา Direct Print เลยไม่เปลื้องโมล เปลื้องแบบ ไม่มี Fixed Cost สามารถทำงานได้หลากหลาย
หลังดูดสูญญากาศ ปลอดให้ปูนแห้งกัน
เอาเข้าเตาเผา เพื่อให้เทียน Evaporate ระเหยออกไป เพื่อให้เกิดช่องว่างในกระบวนการเทโลหะมีค่าต่อๆไป
เทโลหะหลอมเหลวลงไปในปูน
รอให้โลหะเย็นตัว
ล้างปูนออก
ทำความสะอาดด้วยน้ำ (ใช้เครื่องฉีดน้ำอัดแรงดัน ระวังส่วนที่เปราะด้วยนะครับ)
มาตากงานให้แห้งเพื่อเตรียมใน Process Finishing ต่อไป
Polishing ด้วยเครื่องมือต่างๆ อันนี้แล้วแต่โปรเซสของแต่ละที่ หากเป็นงานแบบวิศวะก็แต่ลบคมทำให้เรียบ หากเป็นงานเครื่องประดับก็ทำให้มันวาว
Final Product ใช้เวลาตั้งแต่การพิมพ์อยู่ราวๆ วันครึ่ง

สนใจเครื่อง WaxJet400/410 โปรดติดต่อ 096-140-0420

Preview 3D Scanner ความละเอียดสูง 10ไมครอน AutoScan Inspec

Preview 3D Scanner ความละเอียดสูง 10ไมครอน AutoScan Inspec

วันนี้สินค้าตัวใหม่เข้า เครื่อง AutoScan Inspec เข้ามาครับ เครื่องเป็นระดับ Metrology หรืออยู่ในเกรดเครื่องมาตรวิทยา เพื่อการสอบเทียบ
– ตัวเครื่องมีความละเอียด 10Micron
– กล้องมีความละเอียด 5.0 Mega Pixel จำนวน 2 ตัว
– ระบบแสงฟ้า ไม่ใช่แสงขาว Blue Light LED
– ระบบการสแกน 3แกน

ตัวเครื่อง cover แม้เป็นพลาสติก ก็ผิวสัมผัสดี
แผ่น Calibrate
มือจับแบบต่างๆ
มื่อจับหมุนแบบ Lock
ท่านวาง
Software Dongle และอื่นๆ
Quick Guide และ User Manual

Preview เครื่องพิมพ์สามมิติ ใหญ่มากขนาด 1000mm

Preview เครื่องพิมพ์สามมิติ ใหญ่มากขนาด 1000mm

รูปการติดตั้งเครื่องพิมพ์ 3มิติ ขนาดใหญ่ Big Size 10000mm*1000mm*1000mm

กล่อง Pack มาอย่างดี ใหญ่กว่า Pallet ธรรมดา
แกะฝากล่องอย่างระวัง
นน.มากอยู่ใช้รถ Folklift ช่วยหน่อย
ตำแหน่งที่วางต้องแข็งแรง และได้ระนาบ
เปรียบเทียบขนาด Max660 กับ Max1000 แล้วจะเห็นว่าเครื่องใหญ่ขึ้นมามาก ขอจำกัดในการพิมพ์ชิ้นงานขนาดใหญ่คือการควบคุมอุณหภูมิในห้องพิมพ์ จึงต้องออกแบบเครื่องในเกรดอุตสหกรรม
ขนาดเครื่องเมื่อเปรียบเทียบกับคน
ทดลองพิมพ์ชิ้นงาน ขนาดเกือบเต็มขนาด 1000mm งานออกมาดูดี

Filament Holder

Filament Holder

3D Models / Filament Holder

Bionics เทคโนโลยีเปลี่ยนโลก

Bionics เทคโนโลยีเปลี่ยนโลก
Bionics มาจากคำว่า Biology + Electronics (Jack E. Steele) หรือบางสำนักใช้ Mechanics สำหรับในภาษาไทยนั้น คำที่ใกล้เคียงที่สุดน่าเป็น ชีวจักรกล เป็นเทคโนยีที่ประยุกต์ระหว่าง หมอกับวิศวกร(กรณีที่ใช้กับมนุษย์) หรือ นักวิทยาศาสตร์กับวิศวกร โดยการนำศาสตร์ความรู้ทางเครื่องจักร, Robot, วงจรไฟฟ้า และ AI มาประยุกต์ใช้กับมนุษย์, สิ่งมีชีวิต, สัตว์ รวมถึงพืชด้วย พืช

ตัวอย่างที่เห็นง่ายและชัดเจนคือ แขนกล Bionic Arm ที่ใช้กับผู้พิการแขนขาด สามารถสั่งงานโดยสัญญาณประสาทบริเวณแขนของผู้ใช้งานเอง หรือที่ตอนนี้ฮิตกันมากๆ Exoskeleton อุปกรณ์สวมใส่กับคนปกติ(Wearable robot) ที่ใส่แล้วทำให้คนมีพลังมากขึ้น ลดความเหนื่อยล้าในการ ใช้ในอุตสาหกรรมการผลิตที่คนงานต้องออกแรงเยอะๆ หรือแม้แต่ในวงการทหารที่ทำให้ผู้ใส่กลายเป็นยอดมนุษย์ยกจรวดหลัก 100Kg ได้ เรื่องน่าตืนเต้นในหนัง Scifi พวกมนุษย์ไซบอร์กจะไม่เป็นแค่จิตนาการอีกต่อไป

นอกจากในมนุษย์ Bionics ยังประยุกต์ใช้ในสัตว์เช่น แมลง Bionic Insect เช่นการติด Sensor Tracking การเคลื่อนที่และการดำรงชีวิตของผึ้ง เพื่อศึกษาการลดจำนวนลงของผึ้ง ล่าสุดมีการทดลองติดวงจรรับสัญญาณโดยตรงจากสมองกับลิงพิการ โดยลิงใช้สมองบังคับรถวีลแชร์ให้เคลื่อนที่ได้โดยตรง

Bionics Bugs มีทั้งเลียนแบบการทำงานของแมลง และแบบติดตั้งในตัวของแมลง

โดยนักวิจัยที่ MIT ได้นำเอาท่อนาโนคาร์บอนใส่เข้าไปในเซลล์พืช แล้วทำให้พืชสามารถสังเคราะห์แสงได้มีประสิทธิภาพสูงกว่าเดิม นอกจากนั้น ยังมีงานวิจัยที่ใช้วงจรอิเล็กทรอนิกส์ไปเชื่อมต่อกับระบบการสื่อสารระหว่างเซลล์ในพืช เพื่อใช้พืชเป็นอุปกรณ์เซ็นเซอร์ตรวจจับสิ่งผิดปรกติ ผมเคยเห็นงานวิจัยชิ้นหนึ่ง ที่ทำให้พืชเป็นสิ่งมีชีวิตกึ่งหุ่นยนต์ โดยเชื่อมต่อระบบเคลื่อนที่ของหุ่นยนต์เข้าไปกับพืช เพื่อทำให้พืชสามารถเคลื่อนที่ไปหาแสง หรือ แหล่งน้ำได้ … เป็นการเอาชนะธรรมชาติเดิมของพืช ที่มันเป็นสิ่งมีชีวิตที่เคลื่อนที่ไม่ได้

ในบทความนี้จะพูดถึง Bionics หรือ ชีวจักรกลที่เกี่ยวกับมนุษย์เราเป็นหลัก

exoskeleton ช่วยผู้ป่วยเดินไม่ได้ให้กลับมาเดินได้อีกครั้ง

Bionics ในปัจจุบัน
มีหลายปัจจัยบวกที่ทำให้ Bionics มีความนิยมและใช้ในวงกว้างมากขึ้น เนื่องจากเทคโนโลยีมีราคาถูกลง การขึ้นต้นแบบและการผลิตสามารถทำได้ง่ายขึ้น ไม่ต้องมีการผลิตต่ำขั้นจาก 3D Printer แบตเตอรี่มีขนาดเล็กลงและมีความจุมากขึ้น รวมถึงการมาของ IoT เมื่อทุกอย่างสามารถเชื่อมต่อเข้ากับเนตเวิร์ค บังคับการใช้งานทางไกล

Aging Society สังคมผู้สูงอายุ ปัจจุบันโลกเข้าสู่สังคมผู้สูงอายุคนมีอายุมากขึ้น โดยเฉพาะในประเทศไทยอายุขัยของประชากรมากขึ้น คนแก่อยู่ด้วยตัวเองและพึ่งพาตัวเองมากขึ้น Bionics แบบสวมใส่จะช่วยให้คนแก่เหล่านี้ใช้ชีวิตประจำวันได้ดีขึ้น เช่นชุด ExoSkeleton ทำให้คนแก่เดินได้คล่องตัว หรือช่วยให้มีกำลัง หรือ ตัวซัพพอร์ตเข่าทำให้คนแก่สามารถนั่งยองแล้วลุกขึ้นยืนง่าย

ปัจจุบัน 3D Printer มีความนิยมมากขึ้น และมีราคาถูกลงอย่างมาก มีส่วนช่วยอย่างมากในการสร้างสรรค์นวัตกรรมใหม่ๆ Bionics ล้วนเกี่ยวของกับบุคคล และบุคคลแต่ละคนนั้นมีขนาดไม่เท่ากัน (ขนาดแขนซ้ายและขวายังมีขนาดไม่เท่ากัน) เมื่อก่อนมีข้อจำกัดในการสร้างเนื่องจากเป็นของที่ Custom made ทำให้ต้นทุนสูงใช้เวลาในการผลิตนาน มาปัจจุบันมีเทคโนโลยี 3D Scanning, 3D Printing ซึ่งลดต้นทุนและประหยัดเวลาเป็นอย่างมาก

ส่วนประกอบต่างๆจาก Bionics Arm มาจากเครื่องพิมพ์ 3มิติ

ความปลอดภัยของการทำงานเป็นกฏหมายบังคับใช้ในหลายๆประเทศ อุตสาหกรรมแรกๆที่ใช้ ExoSkeleton (ชุดที่ใสแล้วช่วย Support ร่างกาย ลดการบาดเจ็บในการทำงาน) คืออุตสาหกรรมรถยนต์ บริษัทผลิตรถยนต์หลายแห่งให้พนักงานของตนใช้ Bionic devices ช่วยในการทำงาน ลองนึกภาพว่าพนักงานในสายการผลิตต้องเงยหน้าทั้งวันในการเช็คสภาพรถและไขน็อต หากไม่มีอุปกรณ์ Support อาจจะทำงานได้น้อย หรือบาดเจ็บจากการทำงานได้ง่ายๆ บริษัทที่ใช้อยู่ในปัจจุบันเช่น Ford Motor, BMW, Hyundai (บางแห่งของจากพัฒนาและให้พนักงานตัวเองใช้แล้ว ยังเอามาขายกับคนข้างนอก)

การปรับตัวของมหาวิทยาลัยก็มีส่วนสำคัญ ผลักดันให้ Bionics มีความนิยมมากขึ้น เช่นในไทย รพ.รามาฯ เปิดหลักสูตร “แพทย์-วิศวะ” เรียน 7 ปี ได้สองปริญญา ปั้น “แพทย์นวัตกร” สาขาวิชาที่เป็นการประยุกต์แพทย์+วิศวะ ชีวการแพทย์ เทรนดังกล่าวมีมาช่วงนึงแล้ว เนื่องจากเทคโนโลยี Robotic กับมนุษย์มีความนิยมมากขึ้น การวิจัยที่เกี่ยวกับ Bionics มีมากขึ้น

หลักสูตรที่เปิดร่วมระหว่าง แพทย์รามา-วิศวะมหิดบ

Bionics ในอนาคต
ปัจจุบัน Bionics ยังอยู่ในรูป อุปกรณ์ส่วมใส่(wearable robotics) หรืออุปกรณ์ทดแทน(Prosthetic devices) แต่ในอนาคตอันใกล้เราจะเข้าใกล้หนัง Scifi มากขึ้น หลายๆคนคงรู้จักหนังดังอย่าง The Metrix การเชื่อมต่อคนเข้ากับคอมพิวเตอร์ ผ่านสมองโดยตรง
ล่าสุด Elon Musk เปิดตัว Neurallink โครงการนี้จะฝั่งเส้นสัญญาณขนาดเล็กมากเข้าไปในสมอง ปัจจุบันอาจจะติดเรื่องกฏหมายเรื่องการทดลองในมนุษย์ แต่นักวิทยาศาสตร์บอกว่าเรื่องนี้เป็นไปได้และได้ทดลองกับสัตว์ทดลองเป็นที่เรียบร้อยแล้ว

A : การต่อสายสัญญาณกับสมองโดยตรง B : output สัญญาณออกเป็นช่อง USB-C ดูน่ากลัวพิลึก แต่เรื่องดังกล่าวจะใกล้ตัวเรามากในอนาคต

Bionics กับการใช้งาน แบ่งการใช้งานหลักๆได้ดังนี้

  • Health Care
    การใช้งาน ชีวจักรกลเพื่อการแพทย์ การรักษาผู้ป่วย ตัวอย่างที่เห็นได้ชัดที่สุดคือ ReWalk เป็น ExoSkeleton เพื่อการสวมใส่สำหรับผู้ป่วย Stroke หรือกำลังทำกายภาพบำบัดอยู่ ลักษณะเหมือนเป็นหุ่นยนต์ช่วยเดิน แบบสวมใส่ ช่วยพยุงตัวคนใช้งาน ส่งเสริมการทำกายภาพบำบัด
    หรืออีกตัวอย่างนึง Open Bionics ทำแขนกลสำหรับผู้พิการแขน โดยสามารถสั่งงานการหยิบจับ ผ่านประสาทสัมผัสที่ต้นแขน โดยผู้ใช้สามารถเลือกสี รูปแบบ รวมถึงออกแบบ แขนกลดังกล่าวด้วยตนเองได้

    บ้านพักคนชราที่ญี่ปุ่นเริ่มการใช้ Exoskeleton กันแล้ว
  • Work
    การใช้ Bionics ในโรงงานอุตสหกรรม คลังสินค้า เครื่องมือช่วยดังกล่าวให้พนักงานทำงานได้ยาวนานขึ้น ลดความเมื่อยล้าในการทำงานลง โดยปัจจุบันใจใน line การผลิตของรถยนต์ Ford, Hyundai หรือในคลังสินค้าอย่างใน Amazon ตัวอย่างต่อไปในประเทศญี่ปุ่น มีจำนวนผู้สูงอายุมากขึ้น แต่กับมีผู้ดูแลหรือนางพยาบาลน้อยลง Bionics ที่ใช้สวมใส่ จำพวก ExoSkeleton มีการใช้งานมากขึ้น ในบ้านพักคนชรา ทำให้พยาบาลผู้ดูแลยกคนชราขึ้นเตียงได้ เป็นต้น

    ในสายการผลิตรถยนต์ หรือในคลังสินค้า มีการ wearable robotics อย่างแพร่หลาย
  • Military
    เป็นวงการที่มีเงินลงทุนเยอะที่สุด เรื่องของ Super Soldier มีมานานมากแล้ว เป็นอุปกรณ์ที่สวมใส่ แล้วเพื่อพลังให้ทหารให้ ยกของได้มากขึ้น วิ่งได้เร็วขึ้น และอื่นๆ อาจจะเรียกว่าชุดเกราะทางทหารก็ว่าได้

    เมื่อใส่แล้วทหารวิ่งเร็วขึ้น, สามารถยกของได้มากขึ้น
    เหมือนในหนัง Scifi Exoskeleton มาในการทหารมากขึ้นรวมกับ Robotics

Bionics ประเภทต่างๆตามการสวมใส่

  • แบบส่วมใส่ อาจจะมาในรูปแบบเสื้อ ใส่ที่แขน สวมที่ขา
  • แบบทดแทน ใส่แทนแขนที่เสียไป หรือ ใส่แขนขาที่ถูกตัดไปจากอุบัติเหตุ
  • แบบปลุกถ่าย (จำพวก Neuralink) อันนี้อาจจะดูล้ำหน้า แต่อนาคตอันใกล้เราน่าได้เห็น Bionics แบบปลูกถ่ายในร่างกายเราเลย เชื่อมต่อโดยตรงกับสมองของ อาจจะมาเป็นรูปแบบคอมพิวเตอร์ส่วนบุคคลแบบฝั่งในร่างกายมนุษย์

Bionics กับ 3D Printer
3D Printer เป็นเครื่องมือผลิตชิ้นงาน แบบ Customize ได้ไม่จำเป็นต้องผลิตแบบเดียวกันเป็นหลักพัน หลักหมื่นชิ้นอีกต่อไป ดังนั้นการสร้างชิ้นงานให้เหมาะกับบุคคลนั้นๆ(personalize) จึงไม่ยากและราคาแพงอีกต่อไป เมื่อวัดขนาดทางกายภายของบุคคลนั้นๆด้วยเครื่องมือวัด หรือ 3D Scanner >> สามารถออกแบบชิ้นงานใน CAD ให้เหมาะกับคนนั้นๆ >> สุดท้ายสามารถพิมพ์ชิ้นส่วนพลาสติก หรือ โลหะให้เหมาะกับขนาดคนนั้นๆต่อด้วย 3D Printer เป็นการลดเวลาและต้นทุนการผลิต อีกทั้งยังแม่นยำพอดีกับคนนั้นๆอีกด้วย

Bionics แบบง่ายๆด้วยเครื่องพิมพ์ 3มิติ
Exiii จากญี่ปุ่นใช้ 3D Printer ขั้นสูงในการผลิต
สาวน้อยพิการทั้งสองแขน ใช้ Bionics Arm จาก openbionics
Bionics ไม่ใช่เรื่องไกลตัวอีกต่อไป

Links เพิ่มเติม

https://www.print3dd.com/3d-solutions/medical/ 3D Print/Scan กับงานทางการแพทย์
https://thematter.co/science-tech/lex-bionic-chair/61771 คนไทย ทำ KickStarter
https://www.print3dd.com/open-bionics-to-worlds-first/ Bionics Arm
https://mgronline.com/qol/detail/9620000099374?fbclid=IwAR2Jv0US-ueUOO6yBNqgovSrZdmJG8KFW2x5JriAniw2Ni6eS3WmYjhHseQ แพทย์นวัตกร / มหิดล-รามา

ซื้อ 3D Printer ลดหย่อนภาษีได้สูงสุด 2.5เท่า

สรรพากรฉีดยาแรงกระตุ้นเศรษฐกิจเดินเครื่องลดหย่อนเครื่องจักรใหม่ 2.5 เท่า

สรรพากรเตรียมออกกฎหมายสนองมาตรการการเงินการคลังเพื่อสนับสนุนการลงทุนในประเทศปี 2563 หลังจากคณะรัฐมนตรีได้มีมติเห็นชอบมาตรการภาษีฯ ที่กระทรวงการคลังเสนอ เมื่อวันที่ 28 มกราคม 2563 ผู้ประกอบการนำรายจ่ายลงทุนในเครื่องจักรมาหักภาษีได้มากถึง 2.5 เท่า

นางสมหมาย ศิริอุดมเศรษฐ ที่ปรึกษาด้านยุทธศาสตร์การจัดเก็บภาษี (กลุ่มธุรกิจพลังงาน) ในฐานะโฆษกกรมสรรพากร เผยถึงสาระสำคัญของมาตรการภาษี เพื่อส่งเสริมการลงทุนในประเทศว่า กำหนดให้บริษัท หรือ ห้างหุ้นส่วนนิติบุคคลสามารถนำรายจ่ายจากการลงทุนในเครื่องจักร ในการคำนวณกำไรสุทธิเพื่อเสียภาษีเงินได้นิติบุคคลได้เป็นจำนวน 2.5 เท่า โดยแยกเป็น 2 ส่วน ได้แก่ ส่วนที่ 1 จำนวน 1.5 เท่า (ของรายจ่ายตามจำนวนที่จ่ายจริง) เป็นการยกเว้นภาษีเงินได้นิติบุคคล และส่วนที่ 2 จำนวน 1 เท่า เป็นการ หักค่าสึกหรอ และค่าเสื่อมราคา ทั้งนี้ ไม่รวมถึงกรณีที่เป็นบริษัท หรือห้างหุ้นส่วนนิติบุคคลที่ประกอบกิจการให้เช่าแบบลีสซิ่ง และลงทุนในเครื่องจักร เพื่อให้เช่าเครื่องจักรนั้นแบบลีสซิ่ง) โดยผู้ประกอบการจะได้รับสิทธิประโยชน์นี้ในกรณีที่ได้ลงทุนซื้อเครื่องจักรภายในวันที่ 1 มกราคม 2563 จนถึงวันที่ 31 ธันวาคม 2563 เท่านั้น และเครื่องจักรมีหลักเกณฑ์และเงื่อนไขประกอบดังต่อไปนี้
1. ไม่เคยผ่านการใช้งานมาก่อน
2. หักค่าสึกหรอและค่าเสื่อมราคาได้ และอยู่ในสภาพพร้อมใช้การได้ ภายใน 31 ธันวาคม 2563
3. อยู่ในราชอาณาจักร
4. ไม่ได้รับสิทธิประโยชน์ทางภาษี ตามพระราชกฤษฎีกาที่ออกตามความในประมวลรัษฎากรฉบับอื่น ๆ

จากการออกมาตรการดังกล่าว คาดว่าจะเป็นการช่วยกระตุ้นให้เกิดการลงทุนเพิ่มในภาคเอกชนกว่า 110,000 ล้านบาท อีกทั้งยังช่วยให้ภาพรวมเศรษฐกิจไทยมีการขยายตัวเพิ่มมากขึ้นตามไปด้วย

กรมสรรพากร สำนักงานเลขานุการกรม ส่วนประชาสัมพันธ์
โทร. 0 2272 9529-30 โทรสาร 0 2617 3324
หรือศูนย์สารนิเทศสรรพากร 1161 (RD Intelligence Center)

Additive Manufacturing AM คืออะไร?

Additive Manufacturing AM คืออะไร?

Additive Manufacturing (AM) แปลตรงตัวเลย การผลิตแบบเติมเข้าไป บางครั้งอาจจะใช้คำว่า 3D Printing, Rapid Prototype ล้วนมีความหมายเดียวกัน เป็น CAM(Computer Aided Manufacturing)เครื่องมือ เครื่องจักรในการสร้างชิ้นงานโดยการเพิ่มเนื้อวัสดุเข้าไปที่ละชั้น ชิ้นประกอบด้วยชั้นวันวัสดุหลายๆชั้น โดยไฟล์ที่ใช้ในการพิมพ์นั้นเกิดจากการออกแบบ, สแกน หรือ สร้างจาก CAD(Computer Aided Design) ซอฟแวร์จำพวก SolidWord, Maya, Fusion360 เป็นต้น โดยมาไฟล์ที่ใช้จะมีนามสกุลชื่อ .STL เป็นไฟล์มาตรฐานในการพิมพ์ 3มิติ

ก่อนหน้านี้ AM จะใช้คำว่า Rapid Prototype เนื่องการใช้งานเครื่องช่วงแรกๆนั้น จะใช้ในหน่วยงาน R&D การวิจัยออกแบบ และ พัฒนา ต่อมาเครื่อง Additive Manufacturing มีการใช้งานที่หลากหลายมากขึ้น ระบบที่ออกมาหลังๆ นอกจะพิมพ์เพื่อเป็น ต้นแบบ Prototype แล้ว วัสดุที่พิมพ์ออกมาสามารถใช้ได้จริง ทดแทนการผลิตในรูปแบบเก่า จึงนี้นิยมใช้คำว่า 3D Printing, AM มากกว่าในปัจจุบัน

วัสดุจากเครื่อง AM 

วัสตุที่สามารถสร้างขึ้นมาได้จากเครื่อง AM หรือ 3D Printer มีหลากหลายชนิด ตั้งแต่พลาสติก, เหล็ก หรือ แม้กระทั่งเซลล์ ปัจจุบันวัสดุที่สร้างสรรค์จากเครื่อ Additive Manufacturing สามารถแบ่งเป็น 

  • Polymer พลาสติกต่างๆเช่น ABS, PLA, PET, Nylon (สารตั้งต้นอาจจะอยู่ในแบบ ของแข็ง, ของเหลว หรือ ผง ก็ได้)
  • Wax, Polymer Wax เพื่อใช้ในอุตสหากรรมการหล่อ
  • Metal โลหะชนิดต่างๆ เช่น Stainless, Copper, Titanium
  • ปูนหรือซีเมนต์ บ้านจาก 3D Printing เป็นต้น
  • Bio Material ในอนาคตอันใกล้ เราจะได้เห็นการพิมพ์อวัยวะจากเซลล์ของเราเอง

Subtractive VS Additive Manufacturing

หลายคนอาจจะยังคุ้นเคยกับการผลิตแบบ Subtractive Manufacturing  จำพวก CNC ซึ่งเป็นการขึ้นรูปชิ้นงานโดยการตัดวัสดุออกไป ระบบ Subtractive มีการใช้งานกันมานานแล้ว ยกตัวอย่างง่ายๆคือ “มีท่อนไม้หนึ่งท่อน ช่างแกะสลัก เอาเครื่องมือแกะเนื้อไม้ออกมาจนเป็นเรือ 1 ลำ” เครื่อง CNC มีหลักการทำงานเหมือนกันคือวัสดุตั้นต้นอาจจะเป็นก้อนอลูมิเนียมขนาดใหญ่ 1 ก้อนเครื่องจะใช้ดอกสว่าน หัวต่างๆตัดเนื้ออลูมิเนียมออกไปให้ได้ชิ้นงาน ระบบนี้ยังมีข้อจำกัดในการทำชิ้นงานที่ซับซ้อนอยู่ เช่นไม่สามารถคว้านส่วนที่เป็น Under cut ได้

Additive Manufacturing เป็นการเพิ่มวัสดุเข้าไปทีละชั้นเพื่อในเกิดชิ้นงาน ยกตัวอย่างเปรียบเทียบง่ายๆ “มีก้อนดินอยู่ ช่างปั้นเนื้อดินดังกล่าวเป็นโอ่งขนาดใหญ่” เป็นการเปลี่ยนรูปร่างวัสดุตั้งต้นเป็นรูปร่างอื่นๆ ปัจจุบันระบบที่มีค่าใช้จ่ายถูกที่สุดคือ ระบบ FFF (Fused Filament Fabrication) มีหลักการทำงานคือ เครื่องใช้งานร้อนหลอมพลาสติกให้เป็นของเหลวและพิมพ์ออกมา เหมือนปีนฉีดกาว โดยพิมพ์รูปแบบตามไฟล์ 3มิติที่เราตั้งค่าไว้ การฉีดพลาสติกจะพิมพ์ทีละชั้นขึ้นไปเรื่อยๆ จนได้เป็นรูปร่างตามต้องการ

ข้อดีของ Additive Manufacturing

  • ไม่ขึ้นข้อจำกัดในการออกแบบ สามารถสร้างชิ้นงานที่ซับซ้อนมากๆได้ เนื่องจากพิมพ์ทีละเลเยอร์ ทับไปเรื่อยๆ
  • ไม่ต้องมีการผลิตขั้นต่ำ สามารถผลิตชิ้นงานเดียวในโลกได้เลย สินค้าในอนาคตจะเป็นสินค้า Personalize มากขึ้นเรื่อยๆ 
  • เป็นเครื่องจักรในการผลิต จะแทนทีเครื่องจักรอื่นๆมากขึ้นในอนาคต เนื่องจากไม่ต้องผลิตขึ้นต่ำ สามารถ Customized ได้สูง AM จะอยู่ในโรงงานผลิตทุกๆที ไม่จำเป็นต้องเป็นโรงงานผลิตใหญ่ๆอีกต่อไป
  • สามารถพัฒนาต่อไปได้อีกมาก วัสดุหลากหลาย และท้ายที่สุด สามารถพิมพ์อวัยวะได้

ข้อเสียของ Additive Manufacturing 

  • ปัจจุบันยังข้อจำกัดในเวลาการพิมพ์อยุ่ คือ ใช้เวลานานในการพิมพ์ โดยจุดด้อยตรงนี้มีการพัฒนาอยู่ หรือ อาจแก้โดยการมีเครื่องไว้หลายๆเครื่องแทน

เครื่อง AM มีระบบอะไรกันบ้าง

เครื่องพิมพ์สามมิติแต่ละระบบทำงานอย่างไร

เครื่องพิมพ์สามมิติไม่ว่าจะเป็นระบบใดก็ตามจะสร้างวัตถุขึ้นมาจากไฟล์สามมิติทีละชั้น ๆ เพียงแต่ระบบหนึ่ง ๆ จะมีวิธีการเฉพาะตัว เพื่อไม่ให้เกิดความสับสน เราทำ Infographic ของเครื่องพิมพ์ทุกระบบมาเปรียบเทียบให้เข้าใจได้ง่าย โดยจัดเป็นกลุ่ม ระบบ ชื่อระบบ วัสดุที่ใช้ และยี่ห้อที่มีจำหน่ายในท้องตลาด
additive-manufacturing-infographic--x-large

คลิ๊กที่รูปเพื่อขยาย

กับคำถามที่ว่าเทคโนโลยีแต่ละแบบทำงานอย่างไร และผลงานที่ได้ออกมาหน้าตาเป็นอย่างไร ระบบการพิมพ์แต่ละแบบมีข้อดี-ข้อด้อยอย่างไร?
ในบทต่อไปนี้จะแสดงให้เห็นว่าระบบต่างๆ ทำงานอย่างไรโดยละเอียด

Fused Filament Fabrication (FFF)

เป็นระบบที่นิยมใช้มากที่สุดสำหรับเครื่องพิมพ์ตั้งโต๊ะ ทำงานได้รวดเร็ว และต้นทุนถูกที่สุด

FFF เป็นการพิมพ์ที่เริ่มต้นจากวัสดุที่ทำมาเป็นเส้นยาว ๆ ซึ่งเรียกว่า Filament มันจะถูกดึงมาจากม้วนป้อนเข้าสู่ส่วนที่ทำความร้อนเพื่อทำให้วัสดุละลาย เมื่อมันละลายแล้วก็จะถูกฉีดออกมาจากหัวพิมพ์ซึ่งจะลากไปตามแบบที่กำหนดจากโปรแกรม ในขณะที่วัสดุถูกฉีดออกมาเป็นชั้นๆ มันก็จะเย็นลง และแข็งตัวเพื่อรองรับวัสดุที่จะซ้อนในชั้นต่อๆ ไปจนกระทั่งเสร็จสิ้นทั้งชิ้นงาน
fdm-technologyนอกจากจะเป็นระบบที่ต้นทุนถูกที่สุดแล้ว ยังมีวัสดุ และสีให้เลือกมากมาย ทั้งวัสดุ ABS, PLA, Nylon หรือวัสดุแปลกๆ เช่นเส้นที่ผสมคาร์บอน บรอนซ์ หรือไม้
FDM เป็นตัวเลือกที่ดีที่สุดสำหรับงานที่ต้องการทำต้นแบบด้วยความรวดเร็ว และราคาถูก สามารถนำไปใช้ได้กับงานต่างๆ ได้อย่างกว้างขวาง การพิมพ์ในปัจจุบันมีความก้าวหน้ามาก สามารถพิมพ์ในส่วนที่เป็นกลไก และอิเลคทรอนิคส์ได้ด้วย เช่น โดรน แต่การออกแบบบางลักษณะ และข้อจำกัดของวัสดุ ดังนั้นจึงไม่แนะนำให้ใช้ระบบ FDM กับงานที่มีความละเอียด และซับซ้อนสูง

raspberrypi-case

กล่องใส่ Raspberry Pi B+ ออกแบบโดย walter

housingต้นแบบฝาครอบอุปกรณ์อิเล็กทรอนิกส์

drone Mini FPV Tricopter ออกแบบโดย EMaglio. Printed by Ken’s Hub

house-modelแบบจำลองบ้านพิมพ์ด้วยวัสดุ PLA และ เส้นพลาสติกผสมไม้

bronze-bustsรูปปั้นครึ่งตัวพิมพ์ด้วยเส้นพลาสติกผสมบรอนซ์ ทางขวาเป็นตัวที่ขัดแล้ว

Stereolithography and Digital Light Processing (SLA & DLP)

ระบบเรซิ่นเหลวที่ทำให้แข็งตัวโดยแสง ส่วนมากจะใช้ในงานที่มีรายละเอียดมากๆ งานปั้น และงานเครื่องประดับ

ทั้งระบบ Stereolithography (SLA) และ Digital Light Processing (DLP) สร้างชิ้นงานสามมิติขึ้นจากเรซิ่นเหลว (photopolymer) ใช้แสงที่ส่องเป็นรูปร่างชิ้นงานทำให้มันแข็งตัวเป็นชั้นๆ
ในการขึ้นรูปชิ้นงาน แท่นพิมพ์จะจุ่มลงไปในถาดโปร่งแสงที่มีน้ำเรซิ่นอยู่ เมื่อแท่นพิมพ์จุ่มลงไปถึงก้นถาดเครื่องกำเนิดแสง จะฉายภาพชิ้นงานทีละชั้นทะลุผ่านถาดมาทำให้เรซิ่นแข็งตัว เมื่อเรซิ่นแข็งตัวแล้วแท่นพิมพ์จะขยับสูงขึ้นไปเท่ากับความสูงของชั้นถัดไป น้ำเรซิ่นใหม่ก็จะไหลเข้ามาแทนที่ แล้วเครื่องกำเนิดแสงก็จะฉายภาพของชั้นถัดไป เป็นแบบนี้ทีละชั้นไปเรื่อยๆ จะกระทั่งเสร็จงาน ปัจจุบันเครื่องพิมพ์ระบบนี้มีอยู่สองลักษณะ แตกต่างกันด้วยแหล่งกำเนิดแสงซึ่ง SLA จะใช้แสงเลเซอร์ ในขณะที่เครื่องระบบ DLP จะใช้แสงจากเครื่อง projector

sla-technology
แผนภาพแสดงการทำงานของเครื่องพิมพ์สามมิติระบบ SLA

เทคโนโลยีการพิมพ์สามมิติประเภทนี้มีอยู่ในเครื่องตั้งโต๊ะด้วย วัสดุที่ใช้ได้ขณะนี้จำกัดอยู่ที่เรซิ่นเท่านั้น แต่ก็กำลังจะมีวัสดุหลากหลายอย่างที่มีการผลิตออกมาเพื่อเพิ่มความแข็งแรง และความยืดหยุ่นของชิ้นงาน

เครื่องพิมพ์สามมิติทั้ง SLA และ DLP เป็นระบบมีความละเอียดสูง ได้ผิวงานที่เนียนเรียบ มักใช้กับงานที่มีรายละเอียดมากๆ เช่นงานประติมากรรม เครื่องประดับ งานต้นแบบ โดยปรกติเครื่องพิมพ์ชนิดนี้มีพื้นที่พิมพ์ขนาดเล็ก จึงไม่สามารถพิมพ์งานขนาดใหญ่ได้

part-prototypeการประกอบงานต้นแบบ ใช้เรซิ่นความแข็งแรงสูง (สีน้ำเงิน) กับเรซิ่นปกติ โดยใช้เครื่องของ Formlabs

propeller-prototype ใบพัดเทอโบชาร์จเจอร์ ใช้เรซิ่นความแข็งแรงสูง

planetary-gears ชุดเกียร์ ประกอบกับส่วนที่เคลื่อนไหวได้ ออกแบบโดย aubenc. พิมพ์โดย Diederik’s Hub

ninja-turtleรูปปั้นพิมพ์ที่ความละเอียด 25 ไมครอน ให้รายละเอียด และความเรียบเนียนของพื้นผิวสูง ออกแบบโดย Robin Brockötter

jewelryเครื่องประดับพิมพ์จากเรซิ่นชนิดหล่อตรง และแหวนที่หล่อสำเร็จแล้ว ออกแบบและพิมพ์โดย Formlabs

ระบบ Selective Laser Sintering (SLS)

การขึ้นรูปพลาสติกโดยใช้เลเซอร์ความเข้มสูง เหมาะสำหรับต้นแบบที่นำไปใช้งานได้ และชิ้นส่วนที่มีความสลับซับซ้อน

Selective Laser Sintering (SLS) เป็นการใช้แสงเลเซอร์ไปทำละลายและขึ้นรูปชิ้นงานจากผงวัสดุที่ใส่เข้าไป

เครื่องพิมพ์ระบบนี้จะมีแท่นพิมพ์อยู่สองส่วน เมื่อเริ่มพิมพ์เครื่องจะยิงแสงเลเซอร์ลงไปที่ผงวัสดุ เป็นรูปร่างตามแบบที่กำหนด เมื่อวัสดุละลาย หลอมเป็นเนื้อเดียวกันแล้ว แท่นพิมพ์ส่วนที่สร้างชิ้นงานจะเลื่อนลง ในขณะที่แท่นพิมพ์ส่วนที่บรรจุผงวัสดุจะเลื่อนขึ้น ลูกกลิ้งก็จะกลิ้งเอาผงวัสดุมาทับบนส่วนที่พิมพ์ไปแล้ว แสงเลเซอร์ก็จะยิงแสงเป็นรูปร่างของชั้นต่อไป จนกว่างานจะเสร็จ

sls-technologyแผนภาพแสดงการทำงานของเครื่องพิมพ์สามมิติระบบ SLS

เครื่องพิมพ์ระบบนี้มักใช้ในโรงงานอุตสาหกรรมขนาดใหญ่ อย่างไรก็ตามในปัจจุบันเครื่องระดับตั้งโต๊ะก็มีให้เห็นแล้ว และกำลังถูกผลักดันให้เป็นระบบหลักของการพิมพ์สามมิติ วัสดุที่ใช้ได้มีหลากหลายเช่น polyamides (หรือ nylon), polystyrenes และ thermoplastic elastomers
ระบบ SLS ถูกใช้อย่างแพร่หลายในการทำต้นแบบที่ใช้การได้จริง รวมถึงผลิตภัณฑ์สำเร็จรูปเลยทีเดียว ข้อได้เปรียบประการสำคัญของระบบนี้คือเราสามารถออกแบบได้อย่างอิสระ เนื่องจากผงวัสดุที่ไม่ได้ถูกหลอมจะทำหน้าที่เป็น support ให้กับเนื้องาน ดังนั้นงานที่มีความสลับซับซ้อน มีส่วนยื่น หรือ overhang ก็ไม่มีความจำเป็นต้องสร้าง support เพิ่มเติม เนื่องจากระบบนี้ต้องการเวลาในการระบายความร้อนค่อนข้างนาน จึงทำให้ต้องใช้เวลารวมทั้งกระบวนการนานกว่า

bracketข้อต่อหลักของเครื่องยนต์เจ็ท สามารถลดเนื้อวัสดุลงได้ 78% ออกแบบโดย GE

goproอุปกรณ์เสริมของ GoPro ออกแบบโดย Alan Nguyen

jet-engineแบบจำลองแสดงภาพตัดภายในเครื่องยนต์เจ็ทขอบริษัท GE สามารถเคลื่อนไหวได้ด้วย

beagleboardกล่องใส่คอมพิวเตอร์จิ๋ว BeagleBone พร้อมกับ breadboard ขนาดครึ่งเดียว เพื่อทำเป็นห้องทดลองแบบพกพา

t-rexหุ่นจำลองโครงกระดูกของ Tyrannosaurus rex

Material Jetting (PolyJet and MultiJet Modeling)

ระบบที่มีความแม่นยำ และเสมือนจริงมากที่สุด มีความละเอียด และความเรียบเนียนของพื้นผิวที่ดี
Material Jetting (หรือที่บริษัท Stratasys เรียกว่า PolyJet และ 3D Systems เรียกว่า MultiJet Modeling) เป็นระบบที่คล้ายกับเครื่องพิมพ์ inkjet แต่แทนที่มันจะพ่นหมึกพิมพ์ลงบนกระดาษ มันจะพ่นโพลีเมอร์เหลวลงบนแท่นพิมพ์ จากนั้นแสง UV จะทำให้มันแข็งตัวในทันที
กระบวนการสร้างชิ้นงานจะเริ่มจากการที่เครื่องพิมพ์พ่นของเหลวลงบนแท่นพิมพ์ตามด้วยแสง UV เพื่อให้ของเหลวแข็งตัว จากนั้นชั้นบางๆ ของโพลีเมอร์ก็จะถูกทับซ้อนกันขึ้นไปเรื่อยๆ จนเสร็จ ในส่วนที่เป็น overhang ซึ่งต้องการ support เครื่องจะพ่นวัสดุที่เหมือนเจลเพื่อสร้าง support ชั่วคราว และสามารถเอาออกได้โดยง่ายหลังจากพิมพ์เสร็จ

polyjet-technology
ผังการทำงานของระบบ Material Jetting

ระบบนี้มักใช้ในโรงงานอุตสาหกรรม วัสดุพิมพ์จะประกอบด้วยโพลีเมอร์ไวแสงแบบเหลว มีให้เลือกหลายชนิดตามความต้องการ เช่นความแข็งแรง ความใส ความยืดหยุ่น ข้อได้เปรียบที่สำคัญคือสามารถฉีดวัสดุได้หลากหลายชนิดพร้อมกัน เพื่อให้ได้ลักษณะและสีตามความต้องการ
Material Jetting มีข้อได้เปรียบมากมายในการทำงานต้นแบบ มันช่วยให้ผู้ใช้งานสร้างสรรค์งานที่เหมือนจริง และสามารถใช้งานได้ด้วย และยังมีความละเอียด เที่ยงตรง แม่นยำ เป็นระบบการพิมพ์สามมิติที่ให้ความเที่ยงตรงที่สุดในปัจจุบัน มันพิมพ์ได้ถึง 16 ไมครอน ซึ่งบางกว่าเส้นผมของคนเรา

toothbrushต้นแบบแปรงสีฟัน ที่มีขนแปรงเป็นวัสดุอ่อนนิ่ม ด้ามแปรงแข็ง เหมือนการฉีดพลาสติกแบบ Overmold

injection-moldสร้างแม่พิมพ์โดยใช้วัสดุคล้าย ABS ทำได้รวดเร็ว เที่ยงตรงสูง และประหยัด ใช้เป็นแม่พิมพ์ในการฉีดพลาสติกจำนวนไม่มาก ประมาณ 10-100 ชิ้น

medical-visualizationแบบจำลองตับ ที่ใส มองเห็นภายในเพื่อการศึกษาของมหาวิทยาลัยโกเบ ใช้พลาสติกใสในการพิมพ์

turboท่อแยกหลายทางในเครื่องเทอร์โบ เพื่อทดสอบการติดตั้ง
iphone-caseกรอบใส่โทรศัพท์มือถือ ได้แรงบันดาลใจจากคลื่นน้ำทะเล พิมพ์ด้วยวัสดุเสมือน Polypropylene

Binder Jetting

เครื่องพิมพ์สีธรรมชาติจากหินทราย ใช้กันอย่างกว้างขวางงานประติมากรรมรูปเหมือน และหุ่นจำลอง

เครื่องในระบบ binder jetting จะเหมือนกับระบบ SLS ในแง่ของการพิมพ์โดยใช้ผงวัสดุแล้วหลอมเข้าด้วยกัน เพียงแต่แทนที่จะใช้แสงเลเซอร์เพื่อหลอมผงวัสดุเข้าด้วยกัน มันจะใช้สารเหลวเพื่อเชื่อมให้ผงวัสดุติดกัน
กระบวนการพิมพ์จะเริ่มจากหัวพิมพ์ฉีดสารเหลวไปบนแท่นพิมพ์เพื่อเชื่อมผงวัสดุเข้าด้วยกัน เมื่อชั้นแรกเสร็จเรียบร้อย แท่นพิมพ์จะลดระดับลงเล็กน้อย และผงวัสดุชั้นต่อไปจะถูกเกลี่ยลงไปเป็นชั้นบางๆ แล้ววงจรการพิมพ์ก็จะดำเนินไปเรื่อยๆ จนกระทั่งเสร็จสิ้น ได้ชิ้นงานออกมา
หลังจากที่นำชิ้นงานออกจากแท่นพิมพ์ มันจะต้องถูกนำไปล้างเอาผงวัสดุส่วนเกินออกไป และเคลือบด้วยกาวอีกทีหนึ่งเพื่อให้มันมีความแข็งแรง และป้องกันสีซีดจาง

binder-jetting-technology แผนผังแสดงการทำงานของเครื่องพิมพ์ระบบ Binder Jetting

ระบบ Binder Jetting ถูกใช้ในวงการอุตสาหกรรม วัสดุที่ใช้ปกติจะเป็นหินทราย ให้สีเหมือนธรรมชาติ ในราคาที่เอื้อมถึง เมื่อเทียบกับระบบ SLS เนื่องจากว่าระบบนี้ใช้พลังงานน้อยกว่า แต่งานที่ได้ก็มีความแข็งแรงน้อยกว่า
จากการที่มันพิมพ์งานได้สีตามจริงทำให้มันเป็นที่นิยมในงานแบบจำลองทางสถาปัตยกรรม และรูปปั้นเหมือนจริง ข้อดีข้อหนึ่งที่เหมือนกับระบบ SLS คือผงวัสดุที่ไม่ได้เป็นเนื้องานจะทำหน้าที่เป็น Support ไปในตัว ทำให้งานยากๆ มีส่วนยื่นเยอะๆ ทำได้ง่าย ไม่ต้องสร้าง support เพิ่มเติม

3dl-maisonแบบจำลองบ้าน

stadium-modelแบบจำลองสนามกีฬา AEK ในกรุงเอเธนส์

kitchen-modelแบบจำลองครัว

dinosaurรูปปั้น Tyrannosaurus rex

spraying-device
แบบจำลองเครื่องพ่น

การพิมพ์โลหะ (Selective Laser Melting and Electron Beam Melting)

การพิมพ์ในระบบอุตสาหกรรมอย่างแท้จริง เพื่อผลิตงานที่ใช้งานได้จริง และสามารถใช้โลหะ และอัลลอยได้หลายชนิด

Selective Laser Melting and Electron Beam Melting (SLM and EBM) เป็นระบบที่ใช้กันเป็นปรกติสำหรับการพิมพ์โลหะ ลักษณะของมันจะเหมือนกับระบบ SLS ตรงที่ใช้ผงวัสดุเป็นวัตถุดิบในการขึ้นรูป แล้วหลอมวัสดุเหล่านั้นให้เป็นรูปร่างตามต้องการด้วยความร้อน แต่ด้วยวัสดุที่เป็นโลหะ ระบบนี้ต้องใช้พลังงานสูงมากในการหลอมโลหะ แสงเลเซอร์กำลังสูง (ในระบบ SLM) และแสงอิเล็กตรอน (ในระบบ EBM) จึงถูกนำมาใช้
ในการพิมพ์ด้วยระบบนี้ เครื่องพิมพ์จะเกลี่ยผงโลหะให้เป็นชั้นบางๆ บนแท่นพิมพ์ แล้วผงโลหะจะถูกหลอมละลายด้วยแสงเลเซอร์ (SLM) หรือลำแสงอิเล็กตรอน (EBM) จากนั้นแท่นพิมพ์ก็จะเลื่อนลงแล้วเครื่องก็จะเกลี่ยผงโลหะทับขึ้นไปเพื่อพิมพ์ชั้นต่อไป ทำซ้ำๆ ไปจนชิ้นงานเสร็จสมบูรณ์ ทั้งระบบ SLM และ EBM ต้องการ support เพื่อยึดตัวชิ้นงาน และรองรับส่วนยื่นให้ติดกับแท่นพิมพ์ และเพื่อระบายความร้อนจากตัวงานด้วย นอกจากนี้เวลาพิมพ์ ระบบ SLM จะต้องพิมพ์ในพื้นที่ที่มีออกซิเจนต่ำ และระบบ EBM ต้องพิมพ์ในสุญญากาศ เพื่อลดแรงเค้นจากอุณหภูมิ และลดการบิดงอด้วย
dmls-technology ebm-technology
ผังแสดงการพิมพ์ระบบ SLM                                                                                                                       ผังแสดงการพิมพ์ระบบ EBM
ระบบ SLM และ EBM ถูกใช้กันมากในโรงงานอุตสาหกรรม วัสดุที่ใช้ได้เป็นโลหะหลากหลายชนิด เช่นเหล็ก ไทเทเนียม อลูมิเนียม โคบอลต์-โครม และนิเกิล
การพิมพ์โลหะถือเป็นสิ่งที่ขาดไม่ได้ในการพิมพ์สามมิติ โดยเฉพาะอย่างยิ่งในวงการการบินอวกาศ อากาศยาน รถยนต์ และระบบดูแลสุขภาพ ครอบคลุมตั้งแต่สินค้าไฮเทค แต่ปริมาณน้อย จากงานต้นแบบไปถึงการพิมพ์เพื่อใช้งานจริง การพิมพ์ชิ้นส่วนโลหะทำให้การออกแบบชิ้นส่วนได้เป็นชิ้นเดียว ไม่จำเป็นต้องมีส่วนย่อยๆ มาประกอบกัน สามารถลดขนาดของชิ้นงาน และลดเนื้อวัตถุดิบได้ ระบบการพิมพ์นี้ได้พัฒนามาจนถึงจุดที่ผลงานสามารถเทียบได้กับสิ่งที่ผลิตจากเครื่องจักรโดยทั่วไปได้แล้ว ทั้งในแง่ของเนื้อวัสดุ และคุณสมบัติทางกายภาพ จนถึงระดับจุลภาคเลยทีเดียว

ge-3d-printed-fuel-nozzleชิ้นส่วนเครื่องยนต์ LEAP ของ GE จำนวน 19 ชิ้น ในส่วนของหัวฉีดน้ำมัน สามารถทำให้เครื่องบินรูปร่างเพรียวลมแบบเครื่องบินรุ่น Boeing 737MAX และ Airbus A320neo ทะยานไปได้

dental-copingครอบฟัน และสะพานฟันของคนไข้ พิมพ์ด้วยวัสดุผสม cobalt-chrome

airbusข้อต่อน้ำหนักเบาใช้ในเครื่องบิน Airbus A380

koenigsegg-turboเครื่องยนต์เทอร์โบชาร์จน้ำหนักเบามาก ผลิตโดยบริษัทรถยนต์ในสวีเดน Koenigsegg

globeโล่รางวัลพิมพ์จากโลหะ stainless steel

ติดตามตอนต่อไปในเรื่องของวัสดุที่ใช้ในการพิมพ์