โฟล์คสวาเกนฝึกปัญญาประดิษฐ์ให้ออกแบบชิ้นส่วนรถยนต์ที่ดีกว่า

โฟล์คสวาเกนฝึกปัญญาประดิษฐ์ให้ออกแบบชิ้นส่วนรถยนต์ที่ดีกว่า

โรงงานรถยนต์โฟล์คสวาเกนในเยอรมันนีฝึกสอนให้โปรแกรมปัญญาประดิษฐ์เปลี่ยนวิธีการออกแบบ
และผลิตชิ้นส่วนรถยนต์โดยใช้ 3D printers

โรงงานในกลุ่มโฟล์คสวาเกน ใช้ปัญญาประดิษฐ์ (AI) ในการออกแบบและผลิตชิ้นส่วนยานยนต์ที่มีความซับซ้อน และมีน้ำหนักเบา ขณะนี้มีการจัดแสดงขบวนการผลิต ณ ศูนย์นวัตกรรม และวิศวกรรมแคลิฟอร์เนีย (IECC) ในการแสดงผลงานนี้มีรถยนต์รุ่นแรกที่ใช้ชิ้นส่วนที่ออกแบบโดยปัญญาประดิษฐ์ และผลิตขึ้นมาโดยใช้เครื่องพิมพ์สามมิติ เป็นรถยนต์ไฟฟ้าในรูปทรงของรถรุ่น 1962 Microbus ที่ปรับปรุงขึ้นใหม่

ที่ตัวรถจะมีส่วนประกอบสีส้มเจิดจ้า ที่ทำให้ง่ายต่อการมองเห็นว่าเป็นการออกแบบใหม่โดยใช้ Generative Design ชิ้นส่วนเหล่านั้นประกอบด้วย พวงมาลัย ก้านกระจกมองข้าง และกระทะล้อ

วิศวกรของโฟล์คสวาเกนสามารถใช้ Generati

 

ve Design ในการเน้นเกี่ยวกับลำดับความสำคัญ และเทคโนโลยีเพื่อให้บรรลุเป้าประสงค์ในการผลิตชิ้นส่วนที่มีน้ำหนักน้อยแต่ยังคงความแข็งแรง ทั้งหมดนี้ทำได้โดยผ่านการฝึกสอน AI 

จากเส้นตรงสู่รูปร่างโค้งมน

น่าทึ่งที่ว่าดูเหมือนระบบ AI ของโฟล์คสวาเกนจะออกแบบให้ชิ้นส่วนมีลักษณะเหมือนรากไม้ มากกว่าจะเป็นเส้นตรง และทรงเหลี่ยม ในการผลิตชิ้นส่วนรูปร่างตามนั้น แน่นอนว่าเครื่องพิมพ์สามมิติคือคำตอบ แต่เนื่องจากรถยนต์หนึ่งคันมีส่วนประกอบมากกว่าพันชิ้น ทางทีมงานจะต้องคัดเลือกเอาชิ้นส่วนที่มีประสิทธิผลมากที่สุดที่จะถูกทดแทนด้วยชิ้นส่วนจากเครื่องพิมพ์สามมิติ และพวกเขาก็ใช้ AI ในการคัดเลือกชิ้นส่วนเหล่านั้นด้วย

ในอนาคตโฟล์คสวาเกนมีแผนที่จะใช้การรีไซเคิลแบบครบวงจร โดยนำเอาพลาสติกจากชิ้นส่วนเก่ามาผลิตชิ้นส่วนใหม่ ซึ่งนอกจากจะช่วยประหยัดพลังงานแล้ว ก็ยังลดขยะเป็นข่าวดีกับสภาพแวดล้อมของโลกอีกด้วย

แม้ปัจจุบันการผลิตรถทั้งคันด้วยเครื่องพิมพ์สามมิติยังอาจจะไม่เป็นไปได้ แต่โฟล์คสวาเกนก็แสดงให้เห็นว่าการใช้ AI กับเครื่องพิมพ์สามมิติในการออกแบบรถยนต์ให้ผลลัพท์ในด้านความยืดหยุ่นในการออกแบบ น้ำหนักเบา และผลกำไร

ที่มา: Slash Gear

ความแตกต่างระหว่างเครื่อง SLA & DLP ในปี 2020

ความแตกต่างระหว่างเครื่อง SLA & DLP ในปี 2020

                    ในตลาดมีเทคโนโลยีการพิมพ์ 3 มิติหลายระบบ ทำความคุ้นเคยเกี่ยวกับความแตกต่างของแต่ละระบบเพื่ออธิบายว่าคุณคาดหวังอะไรจากการพิมพ์ซึ่งเป็นการตัดสินใจครั้งสุดท้ายกับเทคโนโลยีที่เหมาะสมกับแอปพลิเคชั่นของคุณSLA (Stereolithography) และ DLP (Digital light processing) การพิมพ์ใน 2 รูปแบบนี้เป็นการพิมพ์ที่เป็นที่รู้จักโดยทั่วไปสำหรับการพิมพ์เรซิ่น การพิมพ์เรซิ่นเป็นที่นิยมในการผลิตชิ้นงานที่มีความแม่นยำสูงแบบ ISOTROPIC และต้นแบบที่เป็นรูปแบบตัน และชิ้นส่วนของหลายๆวัสดุกับงานที่อาศัยความละเอียดและพื้นผิวที่เรียบในขณะที่เทคโนโลยีเหล่านี้เคยมีความซับซ้อนและค่าใช้จ่ายที่สูง แต่ในปัจจุบันรูปแบบของเครื่อง SLA และ DLP ขนาดเล็ก ที่สามารถผลิตชิ้นส่วนที่ได้มาตรฐานอุตสาหกรรมซึ่งอยู่ในราคาที่สามารถจับต้องได้และกับความสามารถรอบด้านที่ไม่มีใครเทียบได้ด้วยวัสดุการพิมพ์ที่หลากหลายการทำงานทั้ง 2 ระบบ โดยอาศัยแหล่งกำเนิดของแสง SLA ใช้แสงเลเซอร์และ DLP ใช้โปรเจคเตอร์ สำหรับวัตถุที่มีความหนาของแต่ละชั้นบางซ้อนกันเพื่อสร้างเป็นของแข็ง ในหลักการใกล้เคียงกันมาก และ 2 เทคโนโลยีให้ผลลัพธ์ที่แตกต่างกันในคำแนะนำนี้ จะพูดถึงรายละเอียดและเปรียบเทียบในรูปแบบของความละเอียด ความแม่นยำ ขนาดของชิ้นงานที่พิมพ์ได้ ความเร็วในการพิมพ์ ขั้นตอนในการทำงานและอีกมากมาย

SLA Printer ทำงานอย่างไร

เครื่องพิมพ์ของ SLA ประกอบด้วยถาดเรซิ่นกับฐานที่โปร่งใสและพื้นผิวที่ไม่ติด ซึ่งทำหน้าที่เป็นพื้นผิวแยกสำหรับรองรับเรซิ่นเหลวเพื่อให้ขณะพิมพ์สามารถแยกชั้นที่เกิดขึ้นใหม่ได้อย่างอ่อนโยน

                    กระบวนการการพิมพ์เริ่มจากแท่นพิมพ์ชิ้นงาน(4) เคลื่อนลงมาใกล้ถาดเรซิ่น(9) และมีระยะห่างระหว่างแท่นพิมพ์ชิ้นงานกับถาดเรซิ่นเท่ากับ Layer Height หรือที่เรียกกันว่าความละเอียดของชิ้นงาน           และด่านล่างของถาดเรซิ่น เลเซอร์จะยิงไปที่กระจก 2 บาน กัลวานอมิเตอร์กำหนดพิกัดของแสงให้ถูกต้องบนกระจก แสงส่องผ่านด้านล่างของถาดเรซิ่นและทำให้เรซิ่นชั้นนั้นๆแข็งตัวชั้นที่ถูกทำให้แข็งตัวแล้วจะแยกออกจากด้านล่างของถาดน้ำยาเรซิ่นและแท่นพิมพ์เคลื่อนที่ขึ้นเพื่อให้เรซิ่นที่เกาะอยู่ที่ตัวงานไหลลงไปที่ถาดเรซิ่นด้านล่าง การทำงานจะเป็นในลักษณะนี้จนกว่าจะปริ้นงานเสร็จ LFS (Low Force Stereolithography) เทคโนโลยี สามารถใช้งานได้ใน Form3 และ Form3L นี่คือเทคโนโลยีการพิมพ์ 3 มิติในรุ่นต่อๆไปในเครื่องพิมพ์ 3 มิติที่เป็นเทคโนโลยี LFS ในส่วนของเลนส์ประกอบไปด้วย LPU(Light Processing Unit) ภายใน LPU ตำแหน่งของกัลวานอมิเตอร์มีความหนาแน่นของเลเซอร์สูงในแกน Y ผ่านทะลุไปยังตัวกรอง และพุ่งไปยังกระจกพับได้และกระจกที่เป็นพาราโบลิกเพื่อความสม่ำเสมอในการรับแสงที่ตั้งฉากกับระนาบที่ใช้ในการสร้างงานและทำให้มั่นใจในเรื่องของความแม่นยำ การเคลื่อนที่ของ LPU ในแกน x ชิ้นงานที่ถูกพิมพ์จะหลุดออกมาจากด้านล่างของถาดเรซิ่นในส่วนที่มีความยืดหยุ่นซึ่งลดแรงอย่างมากระหว่างกระบวนการการพิมพ์

 

                    เทคโนโลยีการพิมพ์ LFS ที่ใช้แรงน้อยมากในระหว่างการพิมพ์ การใช้ถาดเรซิ่นที่มีความยืดหยุ่นและการยิงแสงที่ลักษณะเป็นเส้นตรงมีผลทำให้ได้ผิวชิ้นงานที่มีคุณภาพและความแม่นยำในการพิมพ์ นี่คือพัฒนาการของเครื่องพิมพ์ระบบ SLA ในด้านของคุณภาพพื้นผิวและความแม่นยำในการพิมพ์ แรงที่ใช้น้อยลงในการพิมพ์ทำให้ Support ของชิ้นงานแกะออกได้ง่าย และกระบวนการนี้เป็นสัญญาณที่ดีสำหรับการขยายความเป็นไปได้เกี่ยวกับเทคโนโลยีนี้มากขึ้นสำหรับอนาคต

DLP ทำงานอย่างไร

                    การทำงานเหมือนกับ SLA  เครื่องพิมพ์ 3 มิติระบบ DLP ชิ้นงานจะถูกสร้างขึ้นรอบๆถาดเรซิ่นกับด้านล่างของถาดที่โปร่งแสงและแท่นพิมพ์ชิ้นงานเคลื่อนลงมาใกล้กับถาดเรซิ่นเพื่อสร้างชิ้นงานที่กลับหัว การทำงานของเครื่องเป็นชั้นต่อชั้นความแตกต่างระหว่างแสงที่ใช้งาน เครื่องพิมพ์ระบบ DLP ใช้โปรเจคเตอร์ในการฉายเพื่อทำให้ชิ้นงานในชั้นนั้นแข็งตัวทั้งหน้าตัดของชิ้นงาน

 

                    การประมวลผลด้วยแสง ประกอบด้วยกระจกขนาดเล็กวางลงบนชิบเซมิคอนดักเตอร์ การสลับระหว่างกระจกชิ้นเล็กๆและเลนส์ที่แสงส่องโดยตรงไปยังด้านล่างของถาดเรซิ่นหรือแผ่นระบายความร้อนกำหนดแกนที่น้ำยาเรซิ่นถูกทำให้แข็งภายในชั้นนั้นๆเพราะว่าโปรเจคเตอร์คือหน้าจอประมวลผลด้วยดิจิตอล ภาพในแต่ละชั้นประกอบด้วยหลาย pixel ผลลัพธ์ใน 3 มิติ การขึ้นรูปแต่ละชั้นจากลูกบาศก์ถูกเรียกว่า Voxel (ปริมาตรที่เล็กที่สุดที่รวมตัวกันเป็นภาพสามมิติ)

SLA VS DLP

ความละเอียด

                   ความละเอียดมีหลายค่าให้เลือกใช้มากกว่าใน spec sheet ซึ่งหน่วยพื้นฐานของ SLA และ DLP จะแตกต่างในด้านของรูปทรง สามารถทำงานที่ยากเมื่อเปรียบเทียบกับความแตกต่างของเครื่องโดยเฉพาะค่าบางค่า ในการพิมพ์งาน 3 มิติ จะมี 3 มิติให้พิจารณาเป็นหลัก 2 ระนาบ(X และ Y) และแกน Z ซึ่งจะเป็นแกนในแนวตั้งความละเอียดในแกน Z ถูกนิยามว่าเป็นความหนาของแต่ละชั้นที่ปริ้นเตอร์สามารถทำได้ เครื่องพิมพ์ 3 มิติ ระบบ SLA และ DLP สามารถทำให้ความละเอียดในแกน z มันบางลงได้มากขึ้นและผู้ใช้งานสามารถเลือกใช้งานความละเอียดได้ตั้งแต่ 25-300 ไมครอน ช่วยให้นักออกแบบปรับสมดุลระหว่างรายละเอียดและความเร็วได้

 

                    ในการพิมพ์ระบบ DLP แกน XY จะถูกกำหนดด้วยขนาดของ pixel ซึ่งเป็นลักษณะเล็กมากๆที่โปรเจคเตอร์สามารถทำได้ภายในหนึ่งชั้น สิ่งเหล่านี้ขึ้นอยู่กับความละเอียดของโปรเจคเตอร์ ส่วนใหญ่จะเลือกใช้เป็น HP(1080P) สรุปว่า เครื่องพิมพ์ระบบ DLP ได้มีการแก้ไขความละเอียด XY ซึ่งโดยปกติอยู่ในช่วง 35-100 ไมครอนสำหรับ เครื่องพิมพ์ระบบ SLA ความละเอียดแกน XY จะถูกรวมเข้าด้วยกันโดยดูจากขนาดจุดของเลซอร์ที่ยิงออกมา  และการเพิ่มขึ้นจะถูกควบคุมจากแสงเลเซอร์ เช่น Form3 มีขนาดของเลเซอร์เท่ากับ 85 แต่เป็นเพราะว่าเลเซอร์มีการทำงานที่เป็นเส้นตรงและเลเซอร์สามารถเคลื่อนที่ได้ทำให้ เครื่องพิมพ์สามารถที่จะพิมพ์ชิ้นงานได้ต่อเนื่องเท่าๆกันตลอดชิ้นที่ความละเอียด 25 ไมครอนในแกน XY อย่างไรก็ตาม ความละเอียดในตัวมันเองเป็นการวัดแบบกลวงๆ มันมีข้อบ่งชี้บางอย่าง แต่ไม่ได้จำเป็นสำหรับการเทียบเคียงโดยตรงกับความเที่ยงตรง ความแม่นยำ และคุณภาพการพิมพ์ 

ความเที่ยงตรงและความแม่นยำ

                    กระบวนการเติมแต่งในการพิมพ์ 3 มิติ แต่ละชั้นมีโอกาสที่จะเกิดความไม่แม่นยำ และกระบวนการขึ้นแต่ละชั้นจะส่งผลต่อความแม่นยำ ชิ้นงานถูกกำหนดให้แต่ละชั้นมีความแม่นยำและความเที่ยงตรงที่เท่ากันและความแม่นยำขึ้นอยู่กับหลายปัจจัย กระบวนการพิมพ์ชิ้นงาน วัสดุ การตั้งค่าโปรแกรม ขั้นตอนสุดท้ายในกระบวนการ และอื่นๆโดยทั่วไป ทั้ง SLA และ DLP มีความแม่นยำมาก ความแตกต่างในความแม่นยำและความเที่ยงตรงดีขึ้นมากโดยที่ความแตกต่างของเครื่องพิมพ์จากหลากหลายผู้ผลิตมากกว่าความแตกต่างระหว่างเทคโนโลยีของพวกเขาในกรณีที่เพิ่งเริ่มใช้เครื่องพิมพ์ทั้ง SLA และ DLP จะใช้โปรเจคเตอร์ เลเซอร์ หรือกัลวานอมิเตอร์ และทางผู้ผลิตหลายเจ้าพยายามที่ให้ผู้ใช้งานได้รับประสิทธิภาพสูงสุดออกจากสิ่งเหล่านี้  เครื่องพิมพ์ 3 มิติระบบมืออาชีพทั้งระบบ SLA และ DLP เหมือนกับเครื่องพิมพ์ Formlabs Form3 คุณสมบัติของระบบถูกปรับตามความต้องการของลูกค้าเพื่อความมืออาชีพ

ความเที่ยงตรงและความแม่นยำ มีความสำคัญสำหรับชิ้นงาน dental splints และ surgical guides

 

                   การคาริเบทก็สำคัญเช่นเดียวกัน เกี่ยวกับโปรเจคเตอร์ DLP การผลิตจำเป็นต้องจัดการกับการกระจายของแสงที่ไม่สม่ำเสมอบนระนาบชิ้นงานและการบิดเบือนของเลนส์ พิกเซลที่อยู่ตรงกลางขนาดมีขนาดและรูปร่างไม่เท่ากับพิกเซลที่อยู่ที่ขอบ เครื่องพิมพ์ SLA ใช้แสงชนิดเดียวกับกับทุกชิ้นงานที่พิมพ์ ซึ่งหมายความว่าเหมือนตามคำจำกัดความแต่ยังคงทำการคาริเบทเพื่อตรวจสอบความผิดเพี้ยนถึงแม้ว่าเครื่องพิมพ์ 3 มิติที่คุณภาพในการพิมพ์ที่สูงและองศาของการคาริเบททำให้ผลลัพธ์แตกต่างกันอย่างกว้างขวางขึ้นอยู่กับวัสดุ น้ำยาเรซิ่นมีความแตกต่างกันซึ่งต้องปรับค่าให้เหมาะสมกับการใช้งาน ซึ่งใช้งานได้กับบางวัสดุหรือน้ำยาเรซิ่นที่สามารถใช้งานได้กับแค่บางรุ่นเครื่องพิมพ์ความเที่ยงตรงและความแม่นยำแทบจะเป็นไปไม่ได้ในทางเทคนิคเท่านั้น ทางออกที่ดีที่สุดสำหรับการประเมินเครื่องพิมพ์ 3 มิติ คือการวัดขนาดชิ้นงานจริงหรือผู้ผลิตสามารถสร้างสรรค์ชิ้นงานตามความต้องการของเขาเอง

ขนาดของชิ้นงานที่ผลิตได้

                    เครื่องพิมพ์ 3 มิติระบบ DLP มีควาสัมพันธ์ระหว่างความละเอียดกับปริมาตรของชิ้นงาน ความละเอียดขึ้นอยู่กับโปรเจคเตอร์ ซึ่งสามารถกำหนดขนาดของ pixel ได้ ถ้าเคลื่อนที่โปรเจคเตอร์ให้ใกล้กับกระจกมากขึ้น pixel จะลดลงและสามารถเพิ่มความละเอียดได้แต่ขนาดของพื้นที่ชิ้นงานก็จะเล็กลงสำหรับบางผู้ผลิตวางโปรเจคเตอร์หลายๆตัวข้างๆกันหรือใช้โปรเจคเตอร์ที่มีความละเอียดสูงมาก 4K เพื่อเพิ่มปริมาตรของชิ้นงานซึ่งนำไปสู่ราคาที่สูงมากกว่าราคาเครื่องพิมพ์ที่เป็นเครื่องพิมพ์ขนาดเล็กสรุปว่าเครื่องพิมพ์ 3 มิติระบบ DLP เหมาะสำหรับการใช้งานสำหรับบางรุ่นมีขนาดที่เล็กกว่าและสามารถสร้างงานที่มีขนาดเล็กเช่นรายละเอียดของจิวเวลรี่ ในขณะที่สามารถผลิตชิ้นงานที่ใหญ่จะส่งผลในเรื่องความละเอียดที่น้อยกว่ากระบวนการพิมพ์ระบบ SLA สามารถกำหนดขนาดได้ ขนาดของชิ้นงานที่พิมพ์ได้ของ SLA Printer สามารถเลือกความละเอียดได้มากมาย ในการพิมพ์ชิ้นงานสามารถพิมพ์ชิ้นงานขนาดเท่าไรก็ได้และความะเอียดเท่าไรก็ได้และบริเวณใดก็ได้ในแท่นพิมพ์ชิ้นงาน สามารถพิมพ์ชิ้นงานที่ใหญ่และมีความละเอียดสูงหรือพิมพ์ชิ้นงานขนาดเล็กมากในจำนวนที่มากในเครื่องพิมพ์เดียวกันอุปสรรคหลักๆในการในการเพิ่มปริมาตรของชิ้นงานทั้งเครื่องพิมพ์ 3 มิติ SLA และ DLP คือแรงที่ใช้ในการดึงตัวงานออกจากฟิล์ม ในขณะที่พิมพ์ชิ้นงานที่มีขนาดใหญ่จะใช้แรงในการดึงชั้นที่แข็งตัวออกจากฟิล์มมากเทคโนโลยีการพิมพ์แบบ LFS ฟิล์มที่ยืดหยุ่นที่ถาดของเรซิ่นและลอกออกจากแท่นพิมพ์ในขณะแท่นพิมพ์เคลื่อนที่ขึ้น ซึ่งเห็นได้ชัดเลยว่าความเครียดของชิ้นงานลดลง หมายความว่าแรงที่ใช้ในการดึงชิ้นงานออกจากฟิล์มใช้น้อยลง คุณสมบัติที่เป็นเอกลักษณ์นี้ทำให้สามารถเพิ่มปริมาตรของการพิมพ์ให้ใหญ่ขึ้นได้โดยใช้เครื่องพิมพ์ SLA (FORM3L)

 

พื้นผิวสมบูรณ์

                    เครื่องพิมพ์ระบบ SLA และ DLP ต่างสามารถสร้างชิ้นงานที่มีความเรียบของผิวชิ้นงานมากกว่าระบบการพิมพ์อื่นๆ เมื่อเราพูดถึงความแตกต่าง สามารถดูรายละเอียดจากชิ้นงานขนาดเล็กวัตถุจะสร้างชั้นจาการพิมพ์ เครื่องพิมพ์ 3 มิติสามารถพิมพ์ชิ้นงานในลักษณะชั้นที่เป็นแนวนอน อย่างไรก็ตามเพราะว่า DLP เป็นการประมวลผลแบบรูปภาพโดยการใช้ Voxel ซึ่งส่งผลกระทบกับVoxel ในแนวตั้งด้วย

เนื่องจากหน่วยเป็นสี่เหลี่ยม(Pixel) voxel มีผลกระทบต่อความโค้งของขอบ ลักษณะคล้ายคลึงกับสร้างรูปร่างคล้ายกับ lego
รูปร่างของ Voxel ที่เป็นสี่เหลี่ยมทำให้เห็นขอบที่มีความโค้ง การลบลักษณะของ voxel เมื่อปริ้นชิ้นงานออกมาเรียบร้อยแล้วต้องใช้กระดาษทรายในการขัด

 

 

   ในการพิมพ์แบบ LFS แต่ละชั้นจะชิดกันมากขึ้น ความหยาบของพื้นผิวจะลดลงทำให้พื้นผิวงานเรียบมากและชิ้นงานมีความโปร่งใสในกรณีใช้เรซิ่นชนิดใส

 

ความเร็วและผลผลิต

                    เมื่อเรานึกถึงความเร็วในการพิมพ์ เป็นสิ่งที่สำคัญมากในการพิจารณาความเร็ว ยังรวมไปถึงปริมาณงานด้วยความเร็วในการพิมพ์สำหรับระบบ SLA และ DLP ในการเปรียบเทียบทั่วไป โปรเจคเตอร์จะขึ้นรูปทั้งชั้นภายในครั้งเดียว ความเร็วในการพิมพ์ระบบ DLP นั้นเท่ากันและขึ้นอยู่กับความสูงของชิ้นงานนั้นในขณะที่เครื่องพิมพ์ SLA ใช้เลเซอร์ในการยิงลักษณะเหมือนการวาดตามรูปแบบของไฟล์งานในแต่ละชั้น ข้อดีของการพิมพ์ด้วยเครื่อง SLA เปรียบเทียบกับ DLP ความเร็วในการพิมพ์ขนาดเล็กหรืองานที่มีขนาดไม่ใหญ่มากใช้เวลาในการพิมพ์น้อยกว่า ขณะที่เครื่องพิมพ์ DLP จะพิมพ์ชิ้นงานใหญ่ได้ไวกว่า การพิมพ์ชิ้นงานตันหรือพิมพ์ชิ้นงานเต็มพื้นที่ในการพิมพ์แต่บางครั้งการพิจารณาอย่างถี่ถ้วนระหว่างความละเอียดและปริมาตรงานที่พิมพ์ได้สำหรับเครื่องปริ้นระบบ DLP สำหรับเครื่องปริ้นขนาดเล็กสามารถปริ้นงานเล็กๆได้อย่างรวดเร็ว ความละเอียดสูง แต่ขนาดของชิ้นงานมีข้อจำกัด ความแตกต่างระหว่างเครื่องที่สามารถพิมพ์งานได้ขนาดใหญ่หรือปริ้นงานขนาดเล็กแต่ความละเอียดจะน้อยกว่าระบบ SLAเครื่องพิมพ์ระบบ SLA สามารถผลิตชิ้นงานจบภายในเครื่องเดียวและให้ผู้ใช้ได้มีอำนาจในการตัดสินใจในเรื่องความละเอียด ความเร็ว หรือปริมาณงาน

เครื่องพิมพ์ระบบ SLA สามารถผลิตชิ้นงานข้ามคืนได้ในกรณีการพิมพ์ชิ้นงานที่เยอะ

ขั้นตอนการทำงานและวัสดุ

                    ความเที่ยงตรงและความแม่นยำ ขั้นตอนการทำงานและวัสดุที่สามารถใช้งานได้ ส่วนใหญ่เครื่องพิมพ์ระบบ SLA และ DLP เป็นแบบเสียบแล้วสามารถใช้งานได้เลยสะดวกต่อการใส่แท่นพิมพ์และถาดเรซิ่น สำหรับบางรุ่นเรซิ่นจะไหลลงมาที่แท้งโดยอัตโนมัติ ซึ่งมีความต้องการน้อยและสะดวกสำหรับการพิมพ์ค้างคืนบางเครื่องพิมพ์มีโปรแกรมสำหรับใช้งานได้สำหรับการพิมพ์ เช่น Preform สำหรับเครื่องพิมพ์ Formlab ในขณะที่ผู้ผลิตเจ้าอื่นไม่ได้ใช้วิธีนี้ ลักษณะภายนอกแตกต่างโดยเครื่องมือภายในซอฟแวร์ ยกตัวอย่างเช่น Preform จะมีคำสั่ง One-click print ซึ่งถ้าใช้คำสั่งนี้แล้วโปรแกรมจะสามารถสร้าง Support และรูปแบบการวางอัตโนมัติ โดยฟังก์ชันนี้จะช่วยประหยัดวัสดุและเวลา โชคดีที่โปรแกรมสามารถดาวน์โหลดมาลองใช้งานฟรีก่อนที่จะซื้อเครื่องพิมพ์ 3 มิติ

เรซิ่นมีมากมายหลายชนิดให้เลือกใช้

                    หนึ่งในประโยชน์ของการพิมพ์ 3 มิติระบบเรซิ่นคือความหลากหลายของวัสดุในการพิมพ์ซึ่งสามารถสร้างชิ้นงานที่มีความหลากหลายได้ เรซิ่นมีมากมายหลายสูตร วัสดุมีทั้งชนิดแข็งและนิ่ม เต็มไปด้วยวัสดุอย่างเช่นแก้วและเซรามิค หรือคุณสมบัติในด้านของการทนต่ออุณหภูมิสูงหรือทนต่อแรงกระแทกได้ดีอย่างไรก็ตาม ความแตกต่างของวัสดุขึ้นอยู่กับโมเดลที่ต้องการพิมพ์ ดังนั้นเราแนะนำว่าให้ถามกับทางผู้ผลิตก่อนที่จะมีการซื้อชิ้นงานที่พิมพ์จากเครื่องพิมพ์ทั้งระบบ SLA และ DLPสิ่งที่ต้องทำต่อเนื่องหลังการพิมพ์อันดับแรกชิ้นงานต้องทำการล้างโดยใช้น้ำยา IPA สำหรับการใช้งานของวัสดุไม่ว่าจะในด้านวิศวกรรมหรือชิ้นส่วนทางชีวภาพต่างก็ต้องทำการอบชิ้นงาน Formlabs ได้เสนอแนวทางแก้ไขเหล่านี้เพื่อทำให้ประหยัดเวลาในการพิมพ์สุดท้ายนี้การพิมพ์ชิ้นงานบนตัวค้ำพยุงชิ้นงานสุดท้ายและก็ต้องแกะออกจากตัวงาน เป็นขั้นตอนที่เหมือนกันทั้งระบบ SLA และ DLP เทคโนโลยีการพิมพ์ LFS 3D ช่วยลดความยุ่งยากในขั้นตอนนี้โดยที่โครงสร้างที่ใช้ในการค้ำพยุงชิ้นงานมีจุดสัมผัสของชิ้นงานค่อนข้างเล็กทำให้ง่ายต่อการแกะออกจากตัวโมเดล

ขอขอบคุณบทความจาก www.formlabs.com

 

                                                             

 

 

 

 

 

 

 

5 เครื่องมือฟรีในการซ่อมไฟล์ STL และวิธีทำ

5 เครื่องมือฟรีในการซ่อมไฟล์ STL และวิธีทำ

ไม่ว่าจะเป็นนักออกแบบหรือวิศวกรจำเป็นต้องใช้ซอฟแวร์สำหรับการออกแบบ หรือซ่อมแซมโมเดลสามมิติเพื่อส่งไปพิมพ์ ทุกวันนี้เราไม่ต้องมาปรับโครงสร้างของโมเดลด้วยตัวเองแล้ว มีซอฟแวร์มากมายทั้งที่จัดการไฟล์ให้อัตโนมัติ หรือเลือกที่จะเลือกจัดการเองก็ได้ ซอฟแวร์แบบอัตโนมัติสามารถจัดการไฟล์ที่มีปัญหาเล็กๆ เท่านั้น เช่นรูรั่ว ผนังที่ปิดไม่สนิท แต่โมเดลที่มีปัญหาใหญ่จำเป็นต้องใช้โปรแกรมต่างหากที่มีความสามารถพอสมควร 

ในบทความนี้จะอธิบายถึงขั้นตอน และรายละเอียดในการซ่อมไฟล์โมเดลโดยใช้โปรแกรมสำเร็จรูปทั้ง 5 โปรแกรม

ทำไมต้องซ่อมไฟล์ STL?

โดยปรกติแล้วนักออกแบบจะสร้างโมเดลโดยใช้การสร้างพื้นผิวที่มีความละเอียดซับซ้อน ซึ่งเกิดจากการคำนวณรูปร่างของส่วนโค้งและเส้นคลื่น สำหรับเครื่องพิมพ์สามมิติ ส่วนของพื้นผิวจะถูกแปลงให้เป็นโครงตาข่ายโดยมีจุดเชื่อมเป็นรูปสามเหลี่ยม

ในการแปลงโครงตาข่ายจะคล้ายกับการระเบิดเอาพื้นผิวที่เรียบเนียนสวยงามออกไป แล้วเรียงกลับเข้ามาใหม่เป็นชิ้นย่อยๆ ให้เหมือนต้นฉบับมากที่สุด หากทำได้ไม่ดีก็จะเกิดพื้นผิวที่หยาบ มีรูโหว่ เศษขยะที่ลอยตัว หรือมีส่วนของสามเหลี่ยมที่ตัดกันเองซึ่งไม่ควรจะมีอยู่ ณ ตรงนั้น หากทำออกมาได้ดีก็จะมีผิวที่เรียบร้อย ไม่มีรูโหว่ และเหมือนต้นฉบับมากที่สุด

ตัวอย่างโมเดลที่่มีข้อบกพร่องมากมาย

จะซ่อมแซมไฟล์งาน STL ได้อย่างไร?

ขั้นตอนการซ่อมไฟล์มีดังนี้

  1. Auto-repair เป็นการใช้ระบบอัตโนมัติของซอฟแวร์ ในการปิดผิว ปิดรูโหว่ และซ่อมผิวที่ตัดกันเอง
  2. Separating shells พื้นผิวของโมเดลที่ประกอบด้วยรูปสามเหลี่ยม อาจจเกิดการเชื่อมต่อกันอย่างไม่ถูกต้อง มีส่วนเกินซึ่งจะถูกลบออกไป
  3. Closing holes, bridging gaps บางโปรแกรมจะมีการปิดผิวหลายรูปแบบเช่น แบบแผ่นเรียบ แบบต่อเนื่อง หรือแบบอิสระ
  4. Resolving overlaps and intersections แบบนี้จะต้องทำการคำนวณโครงตาข่ายในส่วนนั้นๆ ใหม่ทั้งหมด
  5. กรองเอาส่วนที่เป็น double faces, double vertices, inverted normals, and sharp, narrow triangles ออกไป
  6. Stitching ปิดมุมที่ไม่เชื่อมกัน และคงช่องเปิดเอาไว้
  7. Manual repair ลบ และสร้างโครงตาข่ายด้วยตนเอง
  8. Remeshing จัดเรียงโครงตาข่ายใหม่ให้เหมาะสม
  9. Exporting บันทึกโครงตาข่ายที่ต้องการ

รูปแบบของไฟล์ที่เป็นที่นิยม และมีขนาดไฟล์ที่เล็กคือ STL (Stereolithography) ซึ่งเราขอแนะนำให้บันทึกเป็นแบบ Binary จะทำให้ไฟล์มีขนาดเล็กกว่า นอกจากนี้ยังมีรูปแบบอืานๆ เช่น AMF, Collada, OBJ, และ PLY ซึ่งสามารถบันทึกข้อมูลเกี่ยวกับสี วัสดุ งานสแกน 3D และอื่นๆ

หมายเหตุ ซอฟแวร์ออกแบบหลายตัวได้บรรจุคำสั่งซ่อมโมเดลไว้อยู่แล้วเช่น FreeCAD, SketchUp, 3D Studio Max, และ Rhinoceros รวมถึงโปรแกรมออนไลน์เช่น Willit 3D Print, MakePrintable, 3DPrinterOS, SculptGL, และ Shapeways สำหรับลูกค้า Formlabs สามารถใช้โปรแกรม Preform ในการซ่อมโมเดลได้เพราะมีการรวมคำสั่งซ่อมของ Netfabb เข้าไปแล้ว 

เปรียบเทียบโปรแกรมซ่อมไฟล์ STL

ประสิทธิผล ประสิทธิภาพ การแสดงผล ความหลากหลาย การจัดโครงตาข่ายใหม่ การซ่อมอัตโนมัติ ความสามารถที่ดี เหมาะกับใคร ราคา
Meshmixer ★★★★ ★★★ ★★★★ ★★★★ ★★★★★ ★★★★ UI, Remesh, & Auto-Fix 3D Artists Free
Netfabb ★★★ ★★★ ★★★ ★★★★ ★★★ ★★★ Infill & Supports Engineers Free (edu)
Magics ★★★ ★★★ ★★★ ★★★★★ ★★★★ ★★★ Manual Repairs Engineers Paid
Blender ★★★★ ★★ ★★ ★★★ ★★★★ Hotkeys CG Artists Free
Meshlab ★★ ★★★★ ★★★★★ Math 3D Scanning Free

จากที่เราได้ทดสอบมาแล้ว โปรแกรมที่มีความสามารถในการซ่อมไฟล์ STL มากที่สุดคือ Meshmixer มันมีการแสดงผลที่ใช้งานง่ายสำหรับการซ่อมโครงตาข่ายที่มีปัญหาซับซ้อน ความสามารถที่หลากหลาย และเป็นของฟรี ทำให้มันขึ้นเป็นอันดับหนึ่งอย่างไม่มีข้อสงสัย

Meshmixer ยังเป็นโปรแกรมที่มีประโยชน์มากในการตกแต่ง ดัดแปลงไฟล์ STL อีกด้วย

Autodesk’s Netfabb ยังมุ่งเน้นไปยังด้านวิศวกรรมโดยเพิ่มความสามารถของการเตรียมไฟล์งาน 3D อีกด้วย

Magics เป็นโปรแกรมซ่อมแซมไฟล์ STL ระดับมืออาชีพ มีฟังก์ชั่นมากมายในการซ่อมไฟล์ แต่ก็ยังต้องการการซ่อมแซมโดยผู้ใช้งานอีกพอสมควร ดังนั้นมันเลยอยู่ในอันดับที่สามของรายการ

ในขณะที่ Blender เน้นการสร้างโมเดล และมีหน้าจอคำสั่งที่ดูยุ่งยาก แต่มันก็ยังมีชุดคำสั่งสำหรับการซ่อมแซมโครงตาข่ายอย่างครบถ้วน

สุดท้าย Meshlab เป็นโปรแกรมที่ต้องมี มันเป็นโปรแกรมขนาดเล็กที่สามารถดู และแก้ไขโครงตาข่ายที่มีชุดคำสั่งอัตโนมัติขั้นสูง

ขั้นตอนการซ่อมแซมไฟล์ STL ด้วยตนเองขั้นสูง

ต่อไปนี้เราจะใช้โปรแกรมซ่อมไฟล์ทั้ง 5 โปรแกรมในการซ่อมไฟล์ตาขอเกี่ยวเสื้อเป็นตัวอย่าง ซุ่งไฟล์นี้มีจุดบกพร่องหลายจุด เช่น รูโหว่ ช่องว่าง จุดตัด และเศษโครงตาข่าย ตาขอจะต้องเชื่อมต่อกับปลอกทรงกระบอกให้เป็นเนื้อเดียวกัน

Meshmixer

Meshmixer เป็นโปรแกรมแก้ไขโครงตาข่ายอเนกประสงค์ และใช้งานง่าย ไม่เพียงแต่เป็นโปรแกรมที่จัดการโครงตาข่ายสามเหลี่ยมให้เหมาะสมเท่านั้น มันยังสามารถวาดขึ้นมาใหม่ได้ทั้งส่วน ปรับเปลี่ยนแก้ไขโมเดลได้อย่างดีอีกด้วย

เมื่อนำโมเดลเข้าสู่โปรแกรม และใช้คำสั่ง Analysis → Inspector โปรแกรมจะแสดงให้เราจะเห็นทันทีว่ามีจุดบกพร่องตรงไหน ภายใต้คำสั่ง Shaders ให้เลือก X-ray mode จะช่วยให้มองเห็นชัดขึ้น ต้องแน่ใจว่าเลือก Hole Fill Mode ที่ถูกต้องก่อนเลือกแก้ไขเฉพาะจุดโดยกดที่จุดสีแดง หรือใช้คำสั่ง Auto Repair All ซึ่งส่วนใหญ่ให้ผลลัพธ์ที่ดี

ใช้คำสั่ง X-ray shader ในหัวข้อ Inspector ช่วยให้เห็นจุดบกพร่องครบทุกจุด

อีกวิธีหนึ่งที่จะซ่อมรูรั่วคือเลือกพื้นที่รอบๆ รู แล้วใช้คำสั่ง Edit → Erase & Fill (F) จาก popup menu ตั้งค่า Replace/FillType เป็นแบบ Smooth MVC จะช่วยให้ผิวที่ได้เรียบเนียนกว่าและ Edit → Make Solid ก็เป็นอีกทางเลือกหนึ่งในการปิดผิว หากเพิ่มการใช้แปรง RobustSmooth ใน sculpting ก็จะช่วยให้มีผิวที่เรียบเนียนขึ้นอีก

หากโมเดลนั้นมี separate shells ให้ไปที่ Edit → Separate Shells แล้วเปิดหน้าต่าง Object Browser โดยกดปุ่ม (Ctrl + Shift + O) จะเห็นรายการ shell ให้เลือกทีละ 2 shell แล้วใช้คำสั่ง Boolean Union จากเมนูจะมีหน้าต่างใหม่ขึ้นมา  ตรง Solution mode สามารถเลือก Precise หรือ Max Quality จะคงส่วนโค้งของจุดตัดของ shell ทั้งสอง แต่ Fast Approximate จะทำงานได้เร็วกว่าและพอเพียงสำหรับการใช้งานแล้ว

หากใช้คำสั่ง Boolean Union แล้วไม่ได้ผลจะเห็น shell ทั้งสองเป็นสีแดง ในกรณีนี้ให้เร่ง Search Depth ให้สูงขึ้น และลด Target Edge Scale ลงเพื่อให้มีโอกาสสำเร็จมากขึ้น และการเลือก Use Intersection Curves ก็ช่วยให้เพิ่มคุณภาพของการเชื่อมต่อมากขึ้น หากลองทุกอย่างแล้วยังทำไม่ได้ ให้ขยับทั้งสองส่วนเข้าหากันประมาณ 20-30 ไมครอนในคำสั่ง Edit → Transform ก็จะช่วยได้

Auto Repair All จะลบเศษชิ้นส่วนที่ลอยตัวอยู่ออกไปทั้งหมด และเชื่อมปิดรอบ ๆ ขอบ จากนั้นเราต้องทำการปิดช่องว่างด้วยตัวเองโดยใช้คำสั่ง Bridge ซึ่งทำงานได้ดีในส่วนที่เป็นเส้นตรง เลือกคำสั่ง Edit → Select แล้วระบายเลือกพื้นที่ของทั้งสองฝั่งที่ต้องการให้เชื่อมกัน จากนั้นกดเลือก Edit → Bridge (Ctrl + B) ตั้งค่า Refine ให้สูงพอที่จะทำให้ผิวเรียบ ทำซ้ำในส่วนอื่นรอบๆ ช่องว่าง แล้วใช้คำสั่ง Inspector ในการปิดช่องว่างที่เหลือทั้งหมด วิธีการป้องกันจุดบกพร่องคือการใช้คำสั่ง Edit → Remesh ก่อนเริ่มซ่อมแซมไฟล์เพื่อเพิ่ม และทำให้โครงตาข่ายมีการประสานกันได้ดีมากขึ้นในส่วนที่ต้องการ

การเชื่อมต่อช่องว่างของรูปทรงกระบอกต้องใช้ คำสั่ง bridging, remeshing และ hole filling ประกอบกันใน Meshmixer.

Meshlab

Meshlab เป็นชุดโปรแกรมที่มีความสามารถพิเศษในการจัดการโครงตาข่ายจากข้อมูลการสแกน 3D และยังมีชุดคำสั่งในการจัดระเบียบโครงตาข่ายหลายแบบ แบบหนึ่งที่มีประโยชน์มากคือ Filters → Remeshing, Simplification and Construction → Simplification (Quadratic Edge Collapse Decimation) เพราะมันจะทำการคำนวณโครงตาข่ายโดยการกำหนดจำนวนของ Faces การตรวจสอบด้วย Planar Simplification จะเป็นการคงพื้นผิวที่เรียบเอาไว้ที่ดีที่สุด อีกทางเลือกหนึ่งในการลดจำนวนโครงตาข่ายคืือ Filters → Cleaning และ Repairing → Merge Close Vertices.

เศษชิ้นส่วนที่ลอยอยู่สามารถตรวจจับได้โดยกดเมาส์ปุ่มขวาที่ส่วนของโมเดล แล้วเลือก Split in Connected Components ชิ้นส่วนที่แยกจากกันสามารถลบหรือเชื่อมต่อกลับไปด้วยคำสั่ง CSG Operation แล้วเลือก Union

คำสั่งพื้นฐานในการซ่อมแซมของ Meshlab: Close holes, Boolean, และ brush selection.

ในโปรแกรมนี้ก็สามารถซ่อมแซมโมเดลได้อย่างง่ายๆ เช่นเดียวกัน ตัวอย่างเช่น Filters → Cleaning and repairing → Select Self Intersecting Faces → Apply ซึ่งจะเลือกพื้นผิวที่มีการตัดกันของสามเหลี่ยมทั้งหมด และสามารถลบได้โดยกดปุ่ม Delete ส่วน Filters → Cleaning และ repairing → Remove Duplicated Faces และ Remove Duplicated Vertex ก็ช่วยได้มากเช่นกัน ขั้นต่อไปเป็นการปิดรูโหว่โดยใช้คำสั่ง Filters → Remeshing, Simplification and Construction → Close Holes และคำสั่ง Compute Geometric Measures ภายใต้ Filters → Quality Measure and Computations จะช่วยบอกว่าจุดไหนที่ไม่เป็น watertight ไม่อย่างนั้นก็ใช้คำสั่ง Render → Show Non Manif Edges and Show Non Manif Vertices

ในการทำสะพานเชื่อมช่องว่าง สามารถเลือกกลุ่มของสามเหลี่ยมและลบออกได้โดยใช้คำสั่ง Select Faces ในปุ่มเครื่องมือ Rectangular Region กดปุ่ม Alt ค้างไว้เพื่อเอา backfaces ออกจากกลุ่มที่เลือกไว้ ใช้ปุ่ม Shift + Ctrl + D เพื่อยกเลิกการเลือกนั้น หากต้องการเลือกสามเหลี่ยมแต่ละอัน ให้กดปุ่ม Z-Painting แล้วเลือกปุ่มแปรงสีแดง คลิดเลือกสามเหลี่ยมทีละอัน คลิกปุ่มขวาเพื่อยกเลิกการเลือก จากนั้นกดปุ่ม delete ที่ keyboard เพื่อลบสามเหลี่ยมที่เลือกออกไป 

เนื่องจาก Meshlab ไม่มีคำสั่งเกี่ยวกับการขึ้นรูป เราจึงต้องใช้วิธี Filters → Remeshing, Simplification and Construction → Surface Reconstruction: VCG ด้วยการตั้งค่า Voxel Side ให้น้อยลง และตั้งค่า Geodesic Weighting and Volume Laplacian Iterations ที่สูงขึ้นให้เหมาะสม จะช่วยให้เกิดโครงตาข่ายที่เรียบเนียนขึ้น วิธีการนี้จะดีกว่าการใช้ Filters → Remeshing, Simplification and Construction → Screened Poisson Surface Reconstruction ซึ่งเหมาะกับชิ้นส่วนงานที่กลวงมากกว่า

       ข้อสังเกต-โปรดบันทึกงานบ่อยๆ เนื่องจาก Meshlab ไม่มีคำสั่งย้อนกลับ ต้องนำเข้าไฟล์ต้นฉบับมาใหม่

คำสั่ง surface reconstruction ใน Meshlab ให้ผลลัพท์ดีกว่าตัวอื่นๆ

Magics

Materialise Magics เป็นโปรแกรมระดับมืออาชีพที่ให้อิสระ และเครื่องมือที่มีความสามารถสูงในการควบคุมโครงตาข่าย เช่นการวิเคราะห์ความหนาของผนัง ความกลวง การเรียงโครงตาข่าย การทำผิวเรียบ การปรับเปลี่ยนผิวงาน รวมถึงการตัดชิ้นงาน และยังมีคำสั่งแก้ไขซ่อมแซมรูรั่ว ขอบงานที่เสียหาย และการซ่อมงานที่เสียหายแบบซับซ้อน

การซ่อมแซมโดยปรกติจะใช้คำสั่ง Fix Wizard แล้วกดปุ่ม Go to Advised Step เพื่อตรวจสอบว่ามีจุดบกพร่องแบบไหน ตรงไหนบ้าง สำหรับโครงตาข่ายขนาดใหญ่ขอแนะนำให้ไม่เลือกคำสั่ง Overlapping triangles และ Intersecting triangles เพื่อซ่อมจุดบกพร่องขนาดใหญ่ก่อน หลังจากกดปุ่ม Update แล้วให้กดปุ่ม Go to Advised Step ตามด้วย Automatic Fixing เพื่อจัดการข้อบกพร่องที่เหลือทั้งหมด 

ในกรณีที่การซ่อมแบบอัตโนมัติล้มเหลว ให้ใช้คำสั่ง Stitch ภายใต้ Stitching ของเมนู Fix Wizard จะแก้ปัญหาเหล่านั้นได้โดยใช้ค่า tolerance ที่สูงขึ้น ในส่วนของ overlapping triangles ให้ใช้คำสั่ง Fix Wizard อีกครั้งหนึ่ง หรือใช้คำสั่ง Detect Overlapping จากตัวเลือก Overlaps ในเมนู Fix Wizard ซึ่งมันจะเลือก overlapping triangles ทั้งหมด จากนั้นกดปุ่ม Delete Marked เพื่อลบมันออกไป ในทำนองเดียวกันยังสามารถใช้คำสั่งนี้กับ intersecting triangles โดยใช้คำสั่ง Triangles → Detect Intersecting แต่หากยังมีช่องว่างหลงเหลืออยู่ก็ให้ใช้คำสั่ง Create ซึ่งสามารถเติมเนื้อให้กับช่องว่าได้ด้วยตนเอง ส่วนที่ลอยอยู่สามารถกำจัดได้โดยคำสั่ง Noise Shells ในส่วนของรูโหว่ขนาดใหญ่ สามารถปิดรูนี้ด้วยตนเองโดยใช้ตัวเลือก Freeform ภายใต้หัวข้อ Holes ใน Fix Wizard จะให้ผลลัพท์ที่ดีในการปิดช่องว่าง ตัวเลือก Ruled จะมีตัวเลือกให้กำหนดทิศทางของรู และในกรณีนี้เราจะใช้มันเป็นสะพานเชื่อมต่อผิวงานรูปทรงกระบอก หลังจากที่เราได้สร้างตาข่ายสำหรับเชื่อมต่อไปบางส่วนแล้ว

บางครั้งคำสั่ง Fix Wizard อาจจะไม่ยอมเชื่อมต่อตาข่ายต่างชนิดกัน แก้ไขได้โดยคลิกปุ่มขวาที่เมนู Part Pages → Part List แล้วเลือก Shells to Parts วิธีนี้จะจะสร้างตาข่ายแยกกันซึ่งสามารถใช้คำสั่ง Tools → Boolean (Ctrl + B) เพื่อเชื่อมต่อกันภายหลังได้

คำสั่งเติมเต็มช่องว่างของ Magics ในการเชื่อมท่อที่มีรูปร่างไม่แน่นอน

Blender

Blender เป็นโปรแกรมฟรี เป็นแบบ open-source ที่สามารทำ 3D modeling, rigging, rendering, และ animation ได้ คำสั่งซ่อมแซมโครงตาข่ายทั้งหมดจะอยู่ใน Edit Mode บนเมนู Mesh จะมี add-on ชื่อ CellBlender ซึ่งจะมีคำสั่ง Mesh Analysis ในการตรวจสอบการเชื่อมต่อของโครงตาข่าย ก่อนเริ่มทำการซ่อมแซมใดๆ ต้องแน่ใจก่อนว่าได้เลือกพื้นที่ๆ ต้องการซ่อมแซมแล้ว 

คำสั่ง Mesh → Normals → Recalculate Outside (Ctrl + N) จะช่วยในการพลิกสามเหลี่ยมที่กลับด้านอยู่ให้ถูกต้อง 

ให้ตรวจสอบแถบข้อมูลที่อยู่ด้านบน ในกรณีที่เกิดตารางสี่เหลี่ยม ก็สามารถเปลงเป็นสามเหลี่ยมได้โดยใช้คำสั่ง Mesh → Faces → Triangulate Faces (Ctrl + T) ส่วนคำสั่ง  Mesh → Degenerate → Dissolve จะลบขอบ และผิวที่ไม่มีเนื้อ ถ้าจะลบส่วนที่ซ้ำซ้อนกัน ให้ใช้คำสั่ง Mesh → Vertices → Remove Doubles

ฟังก์ชั่น Bridging, hole filling, และ Boolean เป็นฟังก์ชั่นที่มีอยู่ใน Blender.

วิธีที่ง่ายที่สุดในการปิดรูโหว่ในโปรแกรม Blender เริ่มจากการเลือกพื้นผิวรอบๆ รูนั้นด้วยคำสั่ง Select → Select Boundary Loop หรือ Select → Select All by Trait → Non Manifold (Shift + Ctrl + Alt + M) แล้วกดปุ่ม Mesh → Faces → Make Edge/Face (F) or Mesh → Faces → Fill (Alt + F) สามเหลี่ยมแต่ละอันสามารถสร้างขึ้นได้โดยกดปุ่มขวาที่ edge หรือ vertex ของสามเหลี่ยม แล้วกดปุ่ม Shift กับ คลิกปุ่มขวาเพื่อเลือกสามเหลี่ยมอันที่สอง แล้วกดปุ่ม F ในระหว่างการแก้ไข และต้องเปลี่ยนไปมาระหว่าง Vertex Select, Face Select, หรือ Edge Select  จะมีปุ่มสามปุ่มด้านล่างช่วยให้เปลี่ยนสะดวกขึ้นมาก 

การเลือกพื้นที่ที่ต้องการสามารถใช้คำสั่ง Select → Circle Select (C) ซึ่งทำงานเหมือนกับการเลือกด้วยแปรง การเปลี่ยนขนาดหัวแปรงทำได้โดยเลื่อนลูกล้อที่เม้าส์ หรือปุ่มเครื่องหมาย +/- การยกเลิกการเลือกโดยการกดปุ่ม Shift ไปพร้อมกัน คำสั่ง Mesh → Faces → Beautify Faces (Shift + Alt + F) ช่วยให้พื้นผิวที่เลือกไว้มีคุณภาพดีขึ้นได้ในบางสถานการณ์ ในการเลือกพื้นที่บางส่วนสามารถใช้คำสั่ง Alt กับ คลิกปุ่มขวาได้ หากมีพื้นที่ที่เลือกไว้สองส่วนแล้วต้องการให้เชื่อมกันให้เรียบ ก็ใช้คำสั่ง Mesh → Edges → Bridge Edge Loops

เลือก Mesh → Vertices → Separate → By loose parts จะช่วยแยกวัตถุออกจาก shell แล้วลบวัตถุที่ไม่ต้องการนั้นได้ หากต้องการเชื่อมวัตถุนั้นกลับไปให้ใช้คำสั่ง Boolean Modifier หากคำสั่งเหล่านั้นไม่ได้ผล ให้ลองใช้ Remesh Modifier และเพิ่มค่า octree depth เป็น 8 หรือจนกว่าจะได้ผลเป็นที่น่าพอใจ ในการเพิ่มความหนาของผนังในส่วนที่ต้องการให้ใช้คำสั่ง Sculpt Mode และเพิ่มขนาดหัวแปรงจากเมนู Brush → Sculpt Tool.

Netfabb

Autodesk Netfabb เป็นโปรแกรมเตรียมงานเพื่อพิมพ์สามมิติขั้นสูง และมันก็ยังเป็นคำสั่งซ่อมแซม stl ที่ถูกฝังไว้ในโปรแกรมต่างๆ เช่น Formlabs Preform มันมีหลายเวอร์ชั่นให้เลือกใช้เช่น Standard, Premium และ Ultimate ซึ่งสองอันแรกจะใช้งานได้ฟรีสำหรับสถานศึกษา

Netfabb มีคำสั่งเพิ่มเติมในการสร้างโมเดลเช่น การทำกลวง การสร้าง support และ Lattice Assistant กับ Lattice Commander มีประโยชน์มาก ช่วยสร้างโมเดลน้ำหนักเบา ในเวอร์ชั่น Ultimate จะเพิ่มคำสั่ง Optimization Utility ซึ่งช่วยออกแบบโครงสร้างในการรับแรงโดยอ้างอิงจาก FEA analysis.

ด้วยคำสั่ง File → Import CAD File as Mesh ทำให้สามารถโหลดข้อมูลนอกเหนือจากไฟล์โครงตาข่ายได้เช่นไฟล์จากโปรแกรม Catia, Siemens NX, SolidWorks, SolidEdge, Rhinoceros, ProE, Sketchup plus support for STEP, IGES, SAT, และ Parasolid XT files ในการนำเข้าไฟล์ปรพเภทโครงตาข่ายให้ใช้คำสั่ง File → Add part แล้วเลือก Extended Repair ในหน้าต่างตัวเลือก มันจะช่วยแก้ปัญหาจุดบกพร่องส่วนใหญ่ได้

ก่อนซ่อมแซมงาน ควรทำการวิเคราะห์ชิ้นงาน ภายใต้ปุ่ม Analysis หรือคลิกปุ่มขวาที่ชิ้นงานแล้วเลือก Parts → Analyse → New Analysis → Add part จะช่วยตรวจสอบความหนาของผนังอย่างรวดเร็ว และเมื่อคลิกปุ่มขวาที่ชิ้นงานแล้วเลือก Analyse → New Measurement จะวัดขนาดชิ้นงานจุดต่างๆ ไม่ว่าจะเป็นรัศมีส่วนโค้ง มุม ความยาว หรือความหนา

Advanced Netfabb functions: การวิเคราะห์ความหนาของผนัง และโครงสร้างของงาน

เปิดส่วนของ Part Repair ที่ taskbar หากการซ่อมแซมแบบอัตโนมัติขณะนำเข้าไฟล์ได้สำเร็จ ที่ Mesh is Closed และ Mesh is Oriented ในส่วนของ Status จะเป็นสีเขียว ในส่วนของ Actions เราสามารถแก้ไขเพิ่มเตอมได้ในกรณีที่ยังมีส่วนของ Actions อยู่โดยภายใต้คำสั่ง Self Intersections ให้เลือก Detect และเลือก Trivial, Stitch Triangles, Remove Double Triangles, Remove Degenerate Faces, หรือ Split Off จากนั้นกดปุ่ม Remove Wrap Part Surface เป็นการทำผิวใหม่ แบบเดียวกับ voxelisation และต้องแน่ใจว่าไม่มีเศษของ shell อยู่โดยดูในส่วนของ Shell

Netfabb มีชุดคำสั่งในการซ่อมแซมงานที่สมบูรณ์แบบ

 

 

เมื่อเราจะสร้างผิวเชื่อมช่องว่าง Netfabb จะทำการปิดช่องว่างนั้นและจะต้องมีการซ่อมแซมเพิ่มเติมด้วยมืออีกขั้นหนึ่ง กดปุ่ม Select Surfaces ที่ชุดเครื่องมือแล้วเลือกรูทั้งหมด จากนั้นกดปุ่ม Delete หรือใช้ปุ่ม Ctrl + หมุนลูกล้อที่เมาส์ หรือปุ่ม +/- เพื่อปรับขนาดของหัวแปรงแล้วก็เลือก เมื่อเลือกแล้วใช้คำสั่ง Remove Selected Triangles แล้วเติมสามเหลี่ยมที่ขาดหายไปด้วยคำสั่ง Add Triangles แล้วจบด้วยคำสั่ง Repair → Close all Holes สุดท้ายยังสามารถปรับแต่งผิวให้ดีขึ้นอีกโดย Mesh Edit → Remesh โปรแกรมจะคำนวณทั้งหมดซ้ำอีกครั้งหนึ่งโดยอาศัยค่าต่างๆ จาก Target Edge Length เลือกตัวแปร Maintain Edge เพื่อรักษาแนวของผิวงานบริเวณขอบที่คม 

———————-

New Balance ร่วมมือกับทางFormlabs สร้างพื้นรองเท้าจาก3D Printer

New Balance ร่วมมือกับทางFormlabs สร้างพื้นรองเท้าจาก3D Printer

             เมื่อไม่นานมานี้ทาง New Balance บริษัททำรองเท้าชื่อดังจากอเมริกาได้ร่วมมือกับทาง Formlabs เพื่อสร้างพื้นรองเท้าจากเครื่องพิมพ์สามมิติ โดยใช้แพลตฟอร์ม TripleCell และใช้เรซิ่นชนิดพิเศษที่เรียกว่า Rebound Resin ซึ่งออกแบบมาเพื่อพิมพ์ชิ้นงานแบบตาข่ายที่ให้ความแข็งแรงและยืดหยุ่นสูงทนต่อการฉีกขาดได้มากกว่าเรซินทั่วไป และยังมีคุณสมบัติที่ทำให้สามารถรับแรงกระแทกได้เพิ่มมาขึ้นกว่าเดิมอีกด้วย

           (ส้นรองเท้าที่พิมพ์จากเครื่องพForm3)

โดยรุ่นของ New Balance ที่ใช้เทคโนโลยีสามมิติเข้ามาช่วยคือรุ่น FuelCell Echo Triple ในรุ่นที่กล่าวมาตัวซัพพอตร์แรงกระแทกตรงพื้นและส้นเท้ารองเท้าจะพิมพ์จากเครื่องพิมพ์สามมิติของทางformlabs รุ่น form3และform 3L  

                                             

(ในรูปคือตัวซัพพอรต์แรงกระแทกที่พิมพ์จากเครื่องForm3และForm3L)

          การใช้เทคโนโลยีสามมิติเข้ามาช่วยทำให้ลดเวลาในการผลิตลงอย่างมาก โดยเมื่อก่อนต้องเริ่มจากการตัดกระดาษและไปขั้นตอนอื่นๆจนได้รองเท้าออกมาใช้เวลาประมาณ15-18เดือน และการรอชิ้นส่วนโฟมและยางอีก 4-6สัปดาห์ แต่พอได้ใช้แพลตฟอร์ม TripleCell ทำให้ไม่ต้องสร้างแม่พิมพ์อีกแล้ว ซึ่งประหยัดเวลาตรงนี้ไปได้อีกหลายเดือน (จากที่ผมดูในvdoตัวTripleCell น่าจะเป็นโปรแกรมที่ไว้ใช้ออกแบบพื้นรองเท้าโดยเฉพาะ สามารถปรับแต่งรูปทรงของงานได้อย่างรวดเร็ว พร้อมทั้งยังสามารถคำนวนจุดรับน้ำหนักหรือจุดที่รับแรงกระแทกได้อีกด้วย และสุดท้ายเมื่อออกแบบเสร็จสามารถนำไฟล์เข้าเครื่องformสั่งพิมพ์งานได้ทันที)

ซึ่งในอนาคตเราคงจะได้เห็นเทคโนโลยีสามมิติเข้ามามีบทบาทในสินค้าที่เราใช้ในชิวิตประจำวันของเรามากขึ้นอย่างแน่นอน โดยเราอาจจะไม่รู้เลยก็ได้ว่าสินค้าที่เราใช้อยู่นั้นมีบางส่วนพิมพ์จากเครื่องพิมพ์สามมิติ สามารถติดตามเทคโนโลยีใหม่ๆได้ที่ www.print3dd.com

รีวิว+แกะกล่อง Formlabs Form3

รีวิว+แกะกล่อง Formlabs Form3

Formlabs Form2 เปิดตัวปี 2015 เป็นเครื่องพิมพ์ 3มิติ ระบบ SLA ที่ได้รางวัลมากมาย ประสบความสำเร็จอย่างมาก มีการพัฒนาเรซิ่นต่อเนื่องมาเรื่อยปัจจุบันมีมามากกว่า 20+ ชนิดที่ใช้ทั่วๆไป(เทา/ขาว/ดำ/ใส) เรซิ่นเชิงวิศวกรรม(High Temp/Rigid/Tough/Durable) เรซิ่นทางการแพทย์-ทันตกรรม(Detal Resin/Clear LT Resin/Surgical Guide Resin)เรซิ่นที่ผ่านการับรองจาก FDA USA ปลายปี 2019 มีการเปิดตัว Formlabs Form3 (Print Size 145*145*185mm) (เป็นรุ่นพัฒนาต่อจาก Form2 ขนาดใกล้เคียงตัวเดิมสูงขึ้นมา 10mm) และรุ่นใหญ่ Form 3L ทีมีขนาดพิมพ์ใหญ่ขึ้นมาเป็นเป็น 335*200*300mm

Formlabs Form3 มีการพัฒนาเพิ่มขึ้นมาหลายๆส่วน ที่สำคัญสุดคงจะเป็นการเปลี่ยนระบบเลเซอร์ตกกระทบเป็นแบบ Low Force Stereolithography (LFS) จากเดิมที่ใช้ระบบ SLA ที่มีตัวกัลวานอมิเตอร์วาดภายในแนว XY ทำให้แสงเลเซอร์ที่ยิงไปที่เรซิ่นตั้งฉากตลอดเวลา งานที่ได้จึงคมขึ้น คุณภาพดีขึ้น นอกจากนั้นมีการเปลี่ยนการออกแบบดูหน้าตาทันสมัยขึ้น มี Sensor ในการตรวจกับเหตุขัดข้องต่างๆได้ดีขึ้น เรามาลงรายละเอียดกันต่อไปในบทความนี้คับ

Form3 ด้านซ้ายมือพัฒนาต่อมาจาก Form2 ส่วน Form 3L ด้านขวามือเป็นตัวใหญ่พิมพ์ได้ใหญ่ 335*200*300mm

แกะกล่อง

เริ่มที่ขนาดกล่องก่อนเลย กล่องของ Form3 มีขนาดใหญ่กว่าเดิมค่อนข้างมาก แพคมาค่อนข้างดีแน่นหนามีโฟมหุ้มทุกด้าน ตัวเครื่องมีขนาดกว้างขึ้นกว่า Form2 ตัวเครื่องด้านนอกเปลี่ยนจากวัสดุอลูมิเนียมมาเป็นพลาสติกฉีดขึ้นรูป ในกล่องของ Form3 ประกอบต้วยตัวเครื่อง, คู่มือการใช้งานเบื้องต้น, สายไฟ, สาย connect ต่างๆ และ แผ่นปรับระดับตัวเครื่อง (ตัวเครื่องมีเครื่องวัดระดับน้ำ Build In มาให้อยู่แล้ว เอาแผ่นตัวนี้มาปรับ)

มีโฟมประกบส่วนบนและล่าง มีกระบะจับดึงขั้นมากจากกล่องได้
กล่อง Form3 ด้านขวา กล่อง Form2 ด้านซ้าย
จะเห็นว่าใหญ่กว่าชัดเจน

รูปร่างภายนอก

ตัวเครื่อง Form3 มีขนาดกว้างขี้นเล็กจากรุ่นก่อนหน้า ตัวเครื่องมีการออกแบบให้เอียงเงยหน้าขึ้น แปลกตาทันสมัย เอียงราบไปพร้อมกันระหว่างตัวเครื่องสีดำกับฝาปิดสีส้มใส ตัวเครื่องเปลี่ยนจากเดิมวัสดุอลูมิเนียม เป็นวัสดุพลาสติกฉีดขึ้นรูป หน้าจอใหญ่ขึ้น ละเอียดมากขึ้น Logo Formlabs ติดแสดงสถานะเครื่องพิมพ์ มีลำโพงเพิ่มขึ้นมาเป็นแจ้งเตือนสถานะเครื่อง เมื่อเปิดฝาสีส้มไปสุดฝาหลังจะไปสุดที่แนวระดับเดียวกับเครื่อง (Form2 เมื่อเปิดฝาเครื่องแล้วจะยื่นออกมาจากตัวเครื่อง) ทำให้สามารถวางชิดพนังได้เลย หรือ เหมาะกับตั้งเป็น Farm Printing (โรงงานพิมพ์ 3มิติ ที่ติดตั้งเครื่องจำนวนมาก)

เมื่อเปิดฝาเครื่อง สังเกตุว่า Form3 ระดับของฝาจะพอดีเป็นระดับเดียวกับด้านหลัง ในขณะที่ของ Form2 จะยื่นออกมาจากตัวเครื่อง
ด้านหลังของเครื่อง Form3 และ Form2
หน้าจอสัมผัส ไฟโลโก้แสดงสถานะ

ด้านบนของตัวเยื้องมาทางด้านหลังเป็นช่องใส่ ตลับเรซิ่น Resin Cartridge มีไฟติดแสดงสถานะการพิมพ์ ด้านบน (สามารถมองเห็นจากด้านหลังของตัวเครื่อง กรณีเครื่องอยู่ห่าง มองเห็นไฟสถานะดังกล่าวได้จากด้านหลัง)

ด้านบนของตัวเครื่อง มีช่องใส่ตลับเรซิ่น และไฟฟ้าแสดงสถานะ

ด้านหลังมีช่องเสียบสายไฟ (ใช้ไฟบ้านทั่วไป 220v), ช่องสาย LAN, ช่อง USB Port และช่องใสสาย Lock

  • Design ใหม่ ทรงเอียงขึ้น ตัวเครื่องสีดำเงา เวลาเปิดฝาจนสุด จะพอดีระนาบเดียวกับด้านหลังตัวเครื่อง
  • ตัวเครื่องกว้างขึ้น เพราะต้องใส่ LPU ข้างใน
  • วัสดุเปลี่ยนจาก ตัวเคลื่องอลูมิเนียม เป็นพลาสติกฉีดขึ้นรูป
  • มีลำโพงเสียงใส่เข้ามาบอกสถานะ
  • ด้านบนตัวเครื่องมีช่องใส่เรซิ่น กับไฟบอกสถานะด้านบน (มาสถานะเห็นจากด้านหลังของตัวเครื่อง)

การติดตั้งเครื่องคร้้งแรก

เมื่อติดตั้งเครื่องครั้งแรก จะมีเมนูแสดงไว้ในจอ LCD แสดงขั้นตอนการติดตั้งอย่างละเอียดให้ทำตามลำดับขั้นตอน

  • ถอดน็อตที่ล็อก LPU ออก (ตัวล็อคนี้ป้องกันไม่ใช้ LPU เครื่องที่ขณะขนส่ง
  • เชื่อมต่อ Wifi
  • ปรับระดับน้ำตัวเครื่อง เครื่องมีเครื่องวัดระดับน้ำ Digital มาให้อยู่แล้ว ให้ใช้จานปรับระดับที่แถมมาปรับระดับขาตั้งสี่ของเครื่อง
  • ใส่ถาดพิมพ์ Resin Tank
  • ใส่ฐานพิมพ์ Build Platform
  • ใส่ตลับเรซิ่น (ให้เขย่าก่อน) ใส่แล้วเปิดฝาตลับ

ระบบ Low Force Stereolithography (LFS) – Light Processing Unit(LPU)

Form3 มีระบบการฉายเลเซอร์ใหม่คือระบบดังกล่าวว่า Low Force Stereolithography เป็นการฉายเลเซอร์ให้ตั้งฉากกับถาดน้ำยาตลอดเวลาโดย การกวาดเลเซอร์ดังกล่าวจะทำที่แกนเดียว คือ แกน Yแทนที่จะกวาดทั้งสองแกนเหมือน Form2 โมดูลที่เคลื่อนที่อยู่บนแกน X นี่เองเรียกว่า Light Processing Unit (LPU) โดย LPU จะทำหน้าที่ฉายแสงและกวาดถาดพิมพ์ไปพร้อมๆกัน (ฟิล์มของถาดพิมพ์หย่อนและไม่ได้สัมผัสชิ้นงานตลอด เพื่อลดแรงสูญญากาศ)

เริ่มต้นในการฉายแสงที่เลเยอร์นั้นๆ โดยการที่ LPU เคลื่อนที่ในแนวแกน X (ซ้าย-ขวา) ด้วยมอเตอร์ ขณะเคลื่อนที่ไปนั้นจะ LPU จะยิงแสงเลเซอร์ขึ้นมาในแนวแกน Y (ด้านลึกของตัวเครื่อง) ด้วยกัลวานอมิเตอร์ การทำงานมอเตอร์และกัลวานอมิเตอร์นี่เองทำให้เกิดการถาดในแนว X-Y และยังทำให้ชิ้นงานตั้งฉากตลอดเวลา — ขอดีของแสงที่ตั้งฉากนั้นจะเป็นการควบคุมแสงที่มีคุณภาพมากกว่าแบบเก่า โดยเฉพาะส่วนขอบของการกวาดเลเซอร์ กัลวานอมิเตอร์แบบ X-Y นั้นแสงที่กึ่งกลางของพื้นที่พิมพ์จะตั้งฉาก แต่ยิ่งจากจากกึ่งกลางเท่าไรแสงจะยิ่งทแยงเท่านั้น เมื่อแสงทแยงคุณภาพจะลดลง ไม่คม จากการหักเหของแสง

Note : Form2 เป็น galvanometer XY จะมีจุดเลเซอร์อยู่ที่ 140um ส่วน Form3 เป็น galvanometer Y อย่างเดียวจึงมีจุดเลเซอร์อยู่ที่ 85um ซึ่งเล็กกว่าละเอียดกว่า

หน้าที่อีกอย่างของ LPU คือการดันฟิลม์ให้ตึง ณ จุดที่พิมพ์ เมื่อผ่านจุดที่พิมพ์ ฟิลม์ที่จุดนั้นหย่อนลง ลดแรงดึงสูญญากาศ Vacuum Force

แสดงให้เห็นการทำงาน LPU เคลื่อนที่แกน X ระหว่างเคลื่อนที่จะกวาดแสงเลเซอร์ในแกน Y ฟิล์มจะหย่อนและไม่ได้สัมผัสชิ้นงานตลอด ทำให้ลดแรงดึงสูญญากาศ
จะเห็นว่าแสงเลเซอร์ตกกระทบกับกระจกโค้ง(ทรงพาลาโบลา) แสงที่ยิ่งไปยังถาด จะตั้งฉากตลอดเวลา

 

ถาดน้ำยา Form3 Resin Tank

Form3 Resin Tank มีการออกแบบใหม่ หากแกะกล่องออกมาจะประกอบด้วย 3 ส่วน

  • กล่องพลาสติกที่ไว้เก็บถาดที่ใช้แล้ว เก็บได้มิดชิด
  • ตัวถาด ก้นถาดมีลักษณะเป็น ฟิล์ม
  • Mixer ก้านสีดำพร้อมแถบแม่เหล็ก ทำหน้าที่กวาดชิ้นงาน

การใช้ร่วมกันกับ Form2

Form3 สามารถใช้ ฐานพิมพ์ (Build Platform) และ Resin Cartridge ตัวเดียวกับ Form2 ได้โดยมีรายละเอียดดังนี้ >>List ของเครื่องเรซิ่นที่ใช้ได้<<  นอกจากนี้ Form3 ยังสามารถใช้งานร่วมกับ Form Wash, Form Cure, Finish Kit แบบเดียวกับ Form2 ได้

สุดท้าย Software Preform ทำงานเหมือนเดิม ที่ต่างไปคือ ระยะเวลาในการพิมพ์เร็วขึ้น รองรับ Support ขนาดเล็กลง

ทดลองพิมพ์ – เราทดลองพิมพ์ 2 ไฟล์

เราใช้ไฟล์ทดสอบเครื่องพิมพ์ โดยมีเสา 4 เสา และ ส่วนทดสอบรายละเอียดตรงกลาง ไฟล์ดังกล่าวเป็นการทดสอบความละเอียดในการพิมพ์ (ส่วนตรงกลาง) และความคาดเคลื่อนของการยิงแสง (เสาทั้งสี่) เสาทั้ง 4 นั้นจะประกอบด้วยเสาซ้อนๆกัน โดยระบุเป็นตัวเลข เลข1-5 มีการย้ำเลเซอร์จากน้อยไปมาก

Note : ธรรมดาไฟล์พิมพ์งานทั่วไปไม่ได้มีการย้ำหรือซ้อนชิ้นงานกันขนาดนี้ ไฟล์เทสนี้เป็นต้องให้เครื่องทำงานเกินความสามารถปกติของมัน

ไฟล์ Test ชิ้นงาน ตรงกลางดูรายละเอียด Detail การขึ้นรูป เสาทั้ง 4 ไว้ดูความคลาดเคลื่อน
เสา 1 ต้นประกอบด้วย ทรงสี๋เหลี่ยมย่อยหลายๆก้อน ยิ่งส่วนที่เป็นเล็ก 5 จะมีก้อนสี่เหลี่ยมซ้อนกันถึง 9 ชั้น
ดูความละเอียดที่เครื่องทำได้ เสาเล็กสุดมีความเล็กขนาดเส้นผม

เมื่อลองพิมพ์ดุเราเชค ความใสของชิ้นงานที่พิมพ์ออกมา และ Detail ที่ได้ ปรากฏว่า Form3 ทำได้ดี Detail ครบโดยชิ้นงานยังมีความใสในระดับที่น่าพอใจ โปรดดูรูปประกอบ

เก็บได้ละเอียดได้ครบถ้วน เหลี่ยมเป็นเหลี่ยม ทรงกลมเป็นทรงกลม
พิมพ์ออกมาได้ใส Shape เป็นเหลี่ยมตรง รอยเลเยอร์น้อยกว่า
ทดสอบความเป็นเหลี่ยม และความใส

ไฟล์ที่สองเป็นการพิมพ์เต็มขนาดที่เครื่องพิมพ์ Formlabs Form3 ทำได้คือขนาด 145*145*185mm โดยเราตั้งความละเอียดในการพิมพ์ต่อชั้นหยาบที่สุดคือ 100Micron มาดู Video การทำงานแบบ Timelapse กับครับด้าน เราใช้ไฟล์นี้เครื่องทดสอบความเร็วในการพิมพ์ โดยค่า Estimate โดย Software บอกว่าชิ้นนี้เราต้องใช้เวลาในการพิมพ์ 25ชม. แต่เอาเข้าจริงตอนกดสั่งพิมพ์เป็น 21ชม. หากเทียบกับแล้ว เราพิมพ์ไฟล์นีักับ Form2 ใช้เวลาในการพิมพ์ 28ชม. สรุปจากการทดสอบเบื้องต้น Form3 พิมพ์ไฟล์นี้ได้ใหญ่กว่า และเร็วกว่าประมาณ 30% เนื่องจากไม่ต้องมีขั้นตอนกวาดเรซิ่นทุกๆชั้นเหมือนกับ Form2

นอกจากนี้มีการทดสอบอีกมาก เช่นการทดสอบพิมพ์ชิ้นงานและซัพพอท เนื่องจากเลเซอร์ตกกระทบตั้งฉากเป็นมีขนาดเล็ก Support จึงมีขนาดเล็กตาม แกะง่าย แต่งชิ้นงานตอนสุดท้ายง่าย

สรุป

จากการได้ทดลองใช้เครื่องทางทีมงานสรุปว่า Formlabs Form3 เป็นเครื่องพิมพ์ที่น่าใช้มาก เครื่องสวย, ออกแบบมาให้ใช้ง่าย คิดมาให้ End User เยอะ (ธรรมดาเครื่องพิมพ์ระบบเรซิ่นจะใช้งานค่อนข้างยากและเลอะเทอะ) สรุปเป็นข้อๆได้ดังนี้

ข้อเด่น

  • ออกแบบมาดี ใช้ง่าย คิดเผื่อคนใช้เยอะ
  • ระบบ Low Force Stereolithography ทำให้พิมพ์ชิ้นงานได้ ละเอียดขึ้น ใสขึ้น
  • Support มีขนาดเล็กลงอย่างเห็นได้ชัด ทำให้แกะชิ้นงานได้ง่าย
  • มีเรซิ่นให้เลือกใช้เยอะ ทั้งแบบการแพทย์ / วิศวกรรม / Jewelry
  • ใช้งานร่วมกับ Form Wash และ Form Cure ได้

จุดด้อย

  • วัสดุตัวเครื่องเป็นพลาสติกฉีดขึ้นรูป (Form1, Form2 ตัว Body เป็นอลูมิเนียม)
  • เครื่องใหญ่ ไปหน่อยคับ

ข้อมูลเพิ่มเติม

>> สั่งซื้อ Formlabs Form 3 ที่นี่ <<

การประยุกต์ใช้งานเครื่องพิมพ์และเครื่องสแกนเนอร์ 3 มิติ ในการทำ Packaging แบบ Vacuum

การประยุกต์ใช้งานเครื่องพิมพ์และเครื่องสแกนเนอร์ 3 มิติ ในการทำ Packaging แบบ Vacuum

        หลายๆ คนที่กำลังมองหาเครื่องมือที่จะนำมาช่วยในการทำงานด้านบรรจุภัณฑ์ (Packaging) ต่างๆ อยู่นั้นทางเรามีวีธีการนำเครื่องมือที่เรียกว่าเทคโนโลยี 3 มิติ ไม่ว่าจะเป็นเครื่องพิมพ์ 3 มิติ ที่สามารถขึ้นรูปชิ้นงานที่มีความซับซ้อนได้เสมือนจริง แถมยังมีต้นทุนที่ต่ำอีก และเครื่องสแกนเนอร์ 3 มิติ ที่สามารถสแกนชิ้นงานจริงแล้วนำไฟล์ที่ได้มาแก้ไขให้เหมือนชิ้นงานต้นแบบตามที่เราต้องการได้ (Coppy Model) ซึ่งจะเหมาะกับผู้ใช้งานที่ไม่ได้เชียวชาญด้านการเขียนแบบ 3 มิติ สำหรับท่านที่ไม่มีความรู้ด้านนี้เลยก็สามารถใช้งานได้ วิธีการนี้อาจจะมีการประยุกต์ใช้กับโปรแกรมอื่นๆ ตามความเหมาะสม เช่น Autodesk Meshmixer และอื่นๆ ถ้าท่านใดที่มีความรู้ทางด้านเทคโนโลยีด้าน 3 มิติ อยู่แล้วจะง่ายมากๆ สำหรับนำไปใช้งาน แต่สำหรับผู้ที่ไม่มีความรู้เลยก็สามารถใช้งานได้เช่นกันทางเรายินดีให้คำปรึกษา และสอนการใช้งานตัวเครื่องอยู่แล้วนะครับ 

ซึ่งตัวอย่างนี้เราจะมาทำ Packaging พลาสติกของแก้วน้ำกันนะครับ ซึ่งจะมีขั้นตอนการทำงานตามลำดับดังนี้

     ขั้นตอนที่ 1 การปรับแต่งชิ้นงานให้เหมาะสมต่อการนำไปใช้ การปรับแต่งนั้นเป็นการปิดรู หรือรอยบนผิวของชิ้นงานที่เราไม่ต้องการออก เพราะว่าการทำ Packaging พลาสติกแบบแวคคั่มปั้มหรือสูญญากาศ (Vacuum) จะต้องปิดช่องหรือรูส่วนที่เราไม่ต้องการออกด้วยถ้าไม่อย่างนั้น เนื้อพลาสติกจะโดนดูดเข้าไปในช่องว่างของชิ้นงานนั้นๆ ทำให้แกะงานแม่แบบออกไม่ได้ การปิดรูนั้นก็แล้วแต่ความถนัดของแต่ละคนเลยว่าถนัดแบบไหน อันนี้เราจะใช้เป็น Blue Tape ปิดรูที่หูจับของแก้วน้ำ ดังภาพประกอบ นำเทปมาติดให้ดีและเนียนที่สุดเท่าที่จะทำได้นะครับ 

 

———————- วีดีโอ ขั้นตอนที่ 1 ———————-

 

     ขั้นตอนที่ 2 การใช้สแกนเนอร์ 3 มิติ สแกนชิ้นงานเพื่อนำไปพิมพ์เป็นบล๊อคแม่แบบในการทำแวคคั่มสูญญากาศ (Vacuum) ซึ่งเราได้ใช้เครื่องสแกนเนอร์เป็นรุ่น Shining Einscan Pro 2X Series ที่มีความแม่นยำสูง 40 ไมครอน ใช้ร่วมกับ Turntable Einscan Pro จะทำให้สแกนงานได้ที่มีขนาดไม่เกิน 200 mm ได้รวดเร็วยิ่งขึ้น เมื่อสแกนชิ้นงานเสร็จต้องนำไฟล์งานออกมาแล้วตั้ง Offset ให้งานให้เพราะ Packaging ของสินค้าก็จะมีขนาดที่ใหญ่กว่าสินค้านิดหน่อย งานที่ได้จาการสแกนจะเป็นไฟล์ .stl , .obj จะได้ไฟล์งานตามรูปภาพประกอบ

 

———————- วีดีโอ ขั้นตอนที่ 2 ———————-

 

     ขั้นตอนที่ 3 การแก้ไขไฟล์ 3 มิติ ที่ได้จากการสแกน ขึ้นตอนนี้ง่ายมากๆ ยิ่งสำหรับคนที่ใช้โปรแกรมเขียน 3 มิติเป็นอยู่แล้วจะเข้าใจได้เร็วมากยิ่งขึ้น ซึ่งโปรแกรมที่เราใช้จะเป็นโปรแกรมฟรี Autodesk Meshmixer โปรแกรมนี้ส่วนมากเราจะใช้ในการทำ Hollow ชิ้นงาน ปรับผิวให้เรียบก่อนที่จะส่งพิมพ์กับเครื่องพิมพ์ 3 มิติ ซึ่งขั้นตอนการทำให้ดูตามวีดีโอนะครับ เมื่อเราเปิดไฟล์เข้ามาในคำสั่ง Import ที่หน้าแรกเลยให้เราระบายสี (เป็นการเลือกพื้นผิวงาน) เพื่อจะทำการปรับผิวงานให้เรียบจะได้ง่ายต่อการทำแวคคั่มสูญญากาศ (Vacuum) คำสั่งที่เราใช้คือ Select >ระบายส่วนที่ตั้งการ >Deform >Smooth ในขั้นตอนการทำ Smooth นั้นจะมีคำสั่งให้เลือกปรับโดยจะเน้นไปที่การปรับ Smooth Scale ยิ่งค่ามากจะเรียบเนียนมากแต่ถ้ามากเกินไปจะทำให้รูทรงชิ้นงานเพี้ยนมากตามไปด้วนะครับ เมื่อได้ค่าที่เหมาะสมแล้วกด Accept ได้เลย ทีนี้เราก็จะได้ไฟล์ 3 มิติ ที่มีผิวงานเรียบเนียมแล้ว ส่วนการ Save งานออกมานั้นให้ใช้คำสั่ง Export > ตั้งชื่องาน นามสกลุที่ได้จะเป็น .stl ให้นำไฟล์ตัวนี้เปิดในโปรแกรมของเครื่องพิมพ์ 3 มิติได้เลยครับ

 

———————- วีดีโอ ขั้นตอนที่ 3-4 ———————-

 

     ขั้นตอนที่ 4 ตั้งค่าการพิมพ์งานกับเครื่องพิมพ์ 3 มิติ ซึ่งเครื่องพิมพ์ 3 มิตินั้นจะมีโปรแกรมที่ใช้ในการตั้งค่าต่างๆ ที่จะใช้พิมพ์ชิ้นงานมากับตัวเครื่องด้วยตัวเครื่องที่เราใช้เป็นตัว Fullscale Max300 ที่มีขนาดพิมพ์งานอยู่ที่ 300x250x300 mm แต่ก่อนหน้านั้นเราจะใช้โปรแกรมของอีกเครื่องพิมพ์รุ่นหนึ่งในการปรับต่งไฟล์งานนิดหน่อยเพื่อให้ง่ายต่อการทำงาน คือโปรแกรม Flashprint ของเครื่องพิมพ์ยี่ห้อ Flashforge ในโปรแกรมนี้เราแค่โดนงานเข้ามาแล้วตัดบางส่วนที่ไม่ต้องการออกกับแบ่งครึ่งชิ้นงานเป็น 2 ชิ้นแค่นั้นเองครับ ดูวีธีการได้ตามวีดีโอ การพิมพ์งานนั้นเราจะใช้ความละเอียดของผิวชิ้นงานอยู่ที่ 200 ไมครอน (Layer Height) พิมพ์งาน 2 ชิ้นเป็นด้านซ้ายและขวา เพราะว่าจะนำมาแวคคั่ม (Vacuum) เป็น  Packaging ซ้าย/ขวา ความเร็วที่ใช้พิมพ์  60mm/s(Print Speed), ความร้อน 210-215 องศา(Temperature), ความหนาของงาน 3 ชั้น(Parameter shell) และเนื้อด้านใน 15% (Fill Density) ใช้วัสดุเป็นพลาสติก PLA (Polylactic acid) ใช้เวลาพิมพ์ประมาณ 9 ชั่วโมง เมื่องานพิมพ์เสร็จแล้วให้แกะออกมาจากนั้นก็สามารถนำไปเข้าเครื่องแวคคั่มแบบสูญญากาศ (Vacuum) ได้เลยครับ

 

     ขึ้นตอนที่ 5 การทำแวคคั่มแบบสูญญากาศ (Vacuum) เราจะใช้แผ่นพลาสติกที่มีความหนา 0.5 มิลลิเมตร เพื่อเน้นความแข็งแรงของตัว Packaging เอง ความร้อนที่ใช้นั้นจะอยู่ที่ 160 องศา เป็นเนื้อพลาสติก HIPS เมื่อความร้อนได้ตามที่เราตั้งแล้วเครื่องจะมีการแจ้งเตือนจากนั้นเราก็ดึงแผ่นพลาสติกลงมาแนบที่ชิ้นงานได้เลยจะเหมือนกับในวีดีโอด้านล่างครับ แล้วเครื่องจะเริ่มดูดอากาศที่อยู่ภายในออกจนหมดหรือให้ได้มากที่สุดเท่าที่จะทำได้ ข้อควรระวังคือถ้าบางครั้งเราเลือกใช้ความร้อนกับเนื้อพลาสติกที่จะทำการแวคคั่ม (Vacuum)  นั้นไม่เหมาะสมหรือผิดค่าจะทำให้พลาสติกที่ใช้นั้นขาดได้ 

 

———————- วีดีโอ ขั้นตอนที่ 5 ———————-

———————- วีดีโอรวม ———————-

Resin Tank LT: ยืดอายุการใช้งาน และเพิ่มโอกาสการพิมพ์สำเร็จให้งานของคุณ

Resin Tank LT: ยืดอายุการใช้งาน และเพิ่มโอกาสการพิมพ์สำเร็จให้งานของคุณ

Formlabs มีถาดเรซินสำหรับเครื่อง Form 2 (resin tank) ให้เลือก 2 แบบมาตรฐาน (standard resin tank) กับแบบที่ใช้ได้นาน (resin tank LT) ซึ่งใช้งานได้ยาวนานกว่าแบบมาตรฐาน โดยเฉพาะอย่างยิ่งเมื่อมีการพิมพ์บ่อยๆ และถาดชนิดนี้จะช่วยเพิ่มโอกาสในการพิมพ์สำเร็จให้สูงขึ้น

ในบทความนี้จะแสดงให้เห็นถึงคุณประโยชน์ของ Resin Tank LT และทำไมจึงควรพิจารณาใช้ Resin Tank LT ในการทำงาน

หมายเหตุ อักษร “LT” ใช้สื่อถึงคำว่า long-term use หมายถึงใช้ได้นาน เช่นในเรซิน Dental LT Clear และ Resin Tank LT.

อายุการใช้งานที่นานกว่า และผลงานที่ดีกว่า

ลักษณะการทำงานของ resin tank คือจะแยกตัวออกจากเนื้องานที่ได้รับแสงยูวีแล้ว หลังจากที่ใช้งาน resin พิมพ์งานไปประมาณ 1-2 ลิตรด้วย resin tank แบบมาตรฐาน คุณจะสังเกตได้ว่าที่ก้นถาด จะมีลักษณะเป็นฝ้า ไม่ใสเหมือนตอนเริ่มใช้งาน นั่นเป็นสัญญาณบอกว่า resin tank เริ่มเสื่อมสภาพ ซึ่งจะมีผลกระทบกับคุณภาพของงานพิมพ์ และอาจจะถึงกับพิมพ์ไม่สำเร็จเลยก็ได้ จึงต้องเปลี่ยนอันใหม่ ซึ่ง Resin Tank LT ได้ถูกออกแบบมาเพื่อให้ทนทานต่อการใช้งาน ยืดอายุการใช้งานให้ยาวนานขึ้น

Formlabs กำหนดอายุของ resin tank จากปริมาณ resin ที่ใช้ไปเป็นจำนวนขวดขนาด 1 ลิตร ซึ่งจะดูจากการที่ไม่สามารถพิมพ์ FormTest ให้สำเร็จได้ โดยผลจากการทดลองพบว่าเมื่อใช้ standard resin อายุของถาดจะอยู่ที่ 1-2 ขวด ก่อนที่จะต้องเปลี่ยนถาดอันใหม่ ส่วนถาด resin tank LT จะมีอายุนานกว่าถึง 2 เท่าเมื่อใช้กับเรซินแบบ Engineering หรือ Dental Resins แต่ถ้าใช้กับ standard resin จะใช้ได้นานกว่าถึง 5 เท่า

เคล็ดลับของมือโปร- วิธีการยืดอายุการใช้งานของทั้ง Resin Tank LT และ Standard Tank โดยการไม่พิมพ์งานที่จุดเดียวกันซ้ำๆ แนะนำให้กระจายกันไป คุณสามารถตรวจสอบการใช้งานได้ด้วย heat maps ใน Formlabs Dashboard

นอกจากนี้เราได้เก็บข้อมูลการพิมพ์สำเร็จและล้มเหลว จากผู้ใช้งานเครื่องพิมพ์ที่ส่งเข้ามาให้ Formlabs กว่า 600,000 ชิ้นงาน เราพบว่างานที่ใช้ถาด Resin Tank LT ช่วยลดโอกาสการพิมพ์ล้มเหลวลงได้ถึง 57% เมื่อเทียบกับถาดแบบมาตรฐาน ลองดูตารางการเปรียบเทียบการล้มเหลวที่ลดลงในเรซินแต่ละชนิดด้านล่างนี้

ตารางแสดงการลดลงของงานที่ล้มเหลวจากเครื่อง Form 2 เมื่อเทียบ Resin Tank LT vs Standard Tank ในรอบกว่า 6 เดือน

 

 วัสดุ                                                                                             % การลดลงของงานที่ล้มเหลว

Castable Wax 57.14%
Castable Resin 57.14%
Tough Resin 54.17%
High Temp Resin 43.59%
Dental Model Resin 42.11%
Dental SG Resin 40.00%
Grey Resin 38.46%
Durable Resin 37.50%
Dental LT Clear Resin 26.67%
Black Resin 20.00%
Clear Resin 16.67%
White Resin 14.29%
Color Base Resin 10.53%

ขยายความเป็นไปได้ในการพัฒนาวัสดุใหม่ๆ

Resin Tank LT ช่วยให้การพัฒนาวัสดุใหม่ๆ ซึ่งอาจจะทำงานได้ไม่ดีนักกับถาดแบบมาตรฐาน มีความเป็นไปได้มากขึ้น ตั้งแต่ที่เราเปิดตัวถาด LT นี้แล้วเราก็ได้พัฒนาวัสดุวิศวกรรมเช่น Rigid Resin, Grey Pro Resin, และ Elastic Resin ซี่งสามารถพิมพ์ได้ดีด้วย Resin Tank LT

Formlabs มีการพัฒนาวัสดุใหม่ๆ อย่างต่อเนื่องเพื่อเพิ่มความสามารถในการผลิตชิ้นงานที่หลากหลายขึ้น เราจึงขอแนะนำให้ใช้ถาด Resin Tank LT เป็นมาตรฐานในการพิมพ์สำหรับวัสดุเรซินทุกชนิด เพื่อประโยชน์ในด้านความทนทาน และอายุการใช้งานที่นานขึ้น เพิ่มโอกาสในการพิมพ์สำเร็จให้มากขึ้น และยังสามารถใช้วัสดุวิศวกรรมต่างๆ ที่มีอยู่ และจะมีเพิ่มขึ้นในอนาคต

การออกแบบใหม่ที่ช่วยป้องกันเรซินกระเด็น

นอกจากการที่ Resin Tank LT จะช่วยเรื่องการใช้งานที่ยาวนานขึ้นแล้ว Formlabs ยังได้ออกแบบเพิ่มเติมเช่น เพิ่มความแม่นยำในการตรวจสอบถาด มีการป้องกันเรซินกระเด็น และการปลดใบปาดทำได้ง่ายขึ้น ทั้งนี้เพื่อการทำงานอย่างราบรื่น ทั้งถาด Standard Tank และ Resin Tank LT มาพร้อมกับฝาตรอบและใบปาดที่นำกลับมาใช้ใหม่ได้ จึงช่วยให้สะดวกในการเก็บรักษา โดยเมื่อนำถาดออกมาจากเครื่องก็สามารถซ้อนถาดเป็นชั้นๆ ได้

Related image

ระบบที่บูรณาการเพื่อการพิมพ์ที่แม่นยำ และต่อเนื่อง

ด้วยอายุการใช้งานที่ยาวนานขึ้น ความสำเร็จในการพิมพ์ที่มากขึ้น และการใช้งานกับวัสดุที่หลากหลายขึ้น เราตื่นเต้นที่เห็นลูกค้าของเราเริ่มเปลี่ยนมาใช้ Resin Tank LT  แล้ว เรายังพัฒนาวัสดุสูตรใหม่ๆ อย่างต่อเนื่องเพื่อใช้กับถาดเรซิ่นนี้ 

ขอยืนยันว่า Resin Tank LT นี้สามารถใช้กับเรซินของ Formlabs ได้ทุกตัว (ยกเว้น Ceramic Resin) และเหมาะอย่างยิ่งในการผลิตงานจำนวนมากๆ เรซินบางชนิดเช่น Dental Resins, Engineering Resins, และ Castable Wax Resin ซึ่งเป็นที่ทราบกันดีว่าทำให้ถาดมีอายุสั้นลงเร็วขึ้น เราจึงแนะนำให้ใช้ถาด Resin Tank LT กับเรซินเหล่านี้

ตารางความเข้ากันได้ของชนิดเรซิน และถาดเรซิน

MATERIAL RESIN TANK LT (RECOMMENDED) STANDARD RESIN TANK
Standard Resins (Black, White, Grey, Clear) ✔️ 5X lifetime ✔️
Dental Resins (Dental Model, Dental SG, Dental LT Clear, Dentures Resins) ✔️ 2X lifetime ✔️
Draft Resin ✔️ 2X lifetime ✔️
High Temp Resin ✔️ 2X lifetime ✔️
Durable Resin ✔️ 2X lifetime ✔️
Tough Resin ✔️ 2X lifetime ✔️
Flexible Resin ✔️ 2X lifetime ✔️
Castable Wax Resin ✔️ 2X lifetime ✔️
Castable Resin ✔️ 2X lifetime ✔️
Color Base Resin ✔️ 2X lifetime ✔️
Grey Pro Resin ✔️ required
Rigid Resin ✔️ required
Elastic Resin ✔️ required
Ceramic Resin ✔️

ทดลองใช้ถาด Resin Tank LT

หากการทำงานของคุณจะดีขึ้นจากคุณสมบัติของถาด Resin Tank LT แล้ว คุณสามารถสั่งถาด Resin Tank LT ไปใช้งานได้เรามีพร้อมส่งให้ทันที

 

ICIT DAY 2019 at KMUTNB

ICIT DAY 2019 at KMUTNB

ขอเรียนเชิญทุกท่านเข้าชมงาน ICIT Day 2019 ณ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ในวันที่ 10-12 กรกฎาคม 2562 นี้ ซึ่งทางเรา Print3DD ได้ร่วมออกงานกับทางมหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ โดยจะมีเครื่องพิมพ์ 3 มิติ ทั้งขนาดเล็ก ขนาดใหญ่ไปโชว์ให้ได้เห็นกัน ทั้งนี้ยังจะมีเครื่องสแกนเนอร์ 3 มิติ ไปสแกนโชว์ให้เห็นกันอีกด้วย สำหรับท่านใดที่อยู่ใกล้ๆ สามารถเข้ามาเยี่ยมชมได้นะคะ ทางเรามีทีมงานที่พร้อมให้คำแนะนำต่างๆ ก่อนที่จะตัดสินใจซื้อสินค้าได้ค่ะ มากันเยอะๆ นะ

คุณพ่อช่วยลูกชายที่สมองพิการให้เดินได้ด้วย 3D Printer

คุณพ่อช่วยลูกชายที่สมองพิการให้เดินได้ด้วย 3D Printer

มีเด็กกว่า 17 ล้านคนบนโลกใบนี้ได้รับผลกระทบจากโรคสมองพิการแต่กำเนิด มันเป็นสิ่งที่น่ากลัวสำหรับพ่อแม่มือใหม่ ด้วยกลัวว่าลูกของตนจะมีปัญหาจากโรคนี้ซึ่งทำให้ไม่สามารถนั่ง ยืน เดิน ใช้ชีวิตประจำวันได้อย่างปรกติ

ในการแก้ปัญหาเหล่านี้ให้เด็กสามารถเดินได้ คุณหมอจะใช้วิธีจัดกระดูก หรือใช้อุปกรณ์ช่วยเหลือซึ่งเริ่มผลิตมาตั้งแต่ช่วงปี 1950 ซึ่งจะทำเป็นรูปร่างมาตรฐาน สวมใส่ไม่พอดี ใส่แล้วไม่สบายตัว ส่วนที่ทำแบบเข้ารูปก็มีราคาแพง อีกทั้งยังใช้เวลานับเดือนในการผลิต

Orthoses on the market today are generally uncomfortable to wear and only high-end, expensive models offer a custom-fit. Custom devices can cost thousands of dollars and take weeks for patients to receive.

เมื่อ 7 ปีที่แล้ว Nik บุตรชายของ Matej คลอดก่อนกำหนด 1 เดือน และเกิดปัญหาระหว่างคลอด ทำให้สมองของ Nik ถูกทำลายบางส่วน ทำให้กลายเป็นสมองพิการ เขาไม่สามารถยืนหรือเดินได้

With Matej’s workflow, the patient’s feet are placed on a vacuum bag in the corrected position and 3D scanned.

Matej ตั้งปณิธานว่าจะช่วยให้ลูกชายของเขาเดินได้ หลังจากค้นคว้าอยู่นานหลายเดือน เขาใช้เครื่องพิมพ์สามมิติมาช่วยผลิตอุปกรณ์ในการช่วยเดิน ในที่สุด Nik ก็สามารถเดินก้าวแรกได้ด้วยตัวเอง

Nik’s orthosis is barely visible from the outside and fits inside his regular shoes.

หลังจากที่มีคนเห็นการเปลี่ยนแปลงของ Nik บรรดาผู้ปกครองต่างก็รวมตัวกันเพื่อช่วยกันปรับปรุงคุณภาพของอุปกรณ์ช่วยเหลือนั้น เพื่อให้เด็กคนอื่นๆ ได้ประโยชน์ด้วย

Custom-made orthoses for multiple patients. 3D printing offers the design freedom to create orthotics with different thicknesses in different areas to more appropriately support each unique patient.

Matej ลาออกจากงานและตั้งบริษัทชื่อ aNImaKe ตามชื่อ Nik ลูกชายของเขา ในอนาคตเขาจะขยายไยังอวัยวะอื่นๆ ในร่างกาย โดยที่เริ่มทดสอบไปแล้วก็มีอุปกรณ์ประคองแขน และตัวช่วยให้ขยับนิ้วมือได้ เพื่อให้เด็กๆ สามารถหยิบจับสิ่งของได้

อ่านรายละเอียดการทำงานของ Matej ได้ที่ https://formlabs.com/blog/father-helps-son-with-cerebral-palsy-walk-with-custom-3d-printed-orthosis