fbpx

นักวิจัยได้พัฒนาหน้ากาก PPE ที่ประสิทธิภาพการใช้งานที่สูงถึง 8เท่า โดยการใช้ 3D Printer

นักวิจัยได้พัฒนาหน้ากาก PPE ที่ประสิทธิภาพการใช้งานที่สูงถึง 8เท่า โดยการใช้ 3D Printer

เมื่อช่วงหลายๆเดือนที่ผ่านมามีการระบาดของ covid-19 ในหลายๆประเทศ ซึ่งทำให้ห้องปฏิบัติการและหลายๆสถานที่จะต้องขาดแคลนชุด PPE
จึงทำให้ทีมนักวิจัยหลายๆที่ขาดแคลหน้ากาก N95 ไปด้วย และได้เปลี่ยนความกังวลให้กลายเป็นความจริงด้วยการสร้างหน้ากากอนามัยที่สั่งทำพิเศษ
และมีประสิทธิภาพสูงกว่าหน้ากาก N95 ถึง8เท่าโดยใช้เครื่อง 3D Printer ของ Formlabs

และที่ผ่านมาในช่วงที่ยังขาดแคลนหน้ากาก N95 จึงต้องสร้าง Solution ทางการแพทย์เพื่อตอบสนองความปลอดภัยต่อการขาดแคลน PPE ที่ส่งผลกระทบอยู่ทั่วประเทศ
ต่อมาได้ทำเริ่มทำแบบพิเศษด้วยการใช้ Scaner 3Dและ3D Printer SLA ของ Form3 และ Form3ฺB  ในการ Flexible Resin โดยทำการทดสอบการออกแบบให้รวดเร็วที่สุดโดยใช้ Tough Resin
เพื่อทำให้ปิดบังที่รอบปากให้ดีกว่าเดิม และนี่เป็นจุดเริ่มต้นของการทำอุปกรณ์ทางการแพทย์ในการสร้าง PPE ที่ไม่เคยมีมาก่อนในด้านการแพทย์ ซึ่งเป็นการแสดงให้เห็นว่าการผสมผสานของเทคโนโลยีและการใช้ต้นทุนที่น้อยนิด สามารถลดต้นทุนและเวลาได้

ทางด้านวิศวะกรหลังจากได้ตรวจสอบแล้วพบว่า หน้ากากนั้นคุณภาพโดยรวมนั้น สุดยอดมาก ทำให้สามารถเพิ่มฟิลเตอร์ P100 ได้ และนอกจากนี้ยังสามารถฆ่าเชื้อได้อย่างง่ายดาย
และการใช้ฟิลเตอร์ P100 ช่วยให้สามารถแชร์การออกแบบมาสก์นี้ เพื่อนำไปทำต่อได้อย่างง่ายดาย ช่างเป็นการออกแบบที่ดีต่อโลก และการพัฒนายังมีอีกต่อไป

และการพัฒนาการของหน้ากาก PPE เพื่อการวิจัยและการแพทย์ ณ ปัจจุบันยังมีค้นคว้าและพัฒนาอยู่อีกต่อไป

เครื่องพิมพ์3มิติที่นักวิจัยและการแพทย์แนะนำ

เครื่องScanner 3D ที่นักวิจัยและการแพทย์แนะนำ

วัสดุตั้งต้นที่นักวิจัยและทางการแพทย์แนะนำ

3D Printer พิมพ์ Motor Part ขั้นตอนตั้งแต่ไฟล์3Dจนมาเป็นรถ

3D Printer พิมพ์ Motor Part ขั้นตอนตั้งแต่ไฟล์3Dจนมาเป็นรถ

พอดีได้ไปเห็น Video นี้น่าสนใจ เป็นการใช้เครื่อง 3D printer ในการช่วยร่นระยะเวลาในการผลิตชิ้นส่วนรถยนต์ โดยตัวอย่างที่ยกมานั้นเป็น รถยนต์จาก Great Wall Motor (ที่เพิ่งซื้อโรงงาน GM ไปเร็วๆนี้ในไทย) ได้โชว์ผลงานการทำ “พวงมาลัย” รถยนต์ จากเครื่องพิมพ์3มิต ระบบ SLA

**ระบบSLA คืออะไร?…คร่าวๆคือระบบที่ใช้แสงเลเซอร์ในการยิงน้ำยาเรซิ่นให้เซตตัวทำให้เกิดรูปร่าง โดยนำไฟล์3มิติมาปรับให้แบ่งเป็น Layer ยิ่ง Layer เยอะความละเอียดยิ่งมากตาม ซึ่งตัวระบบนี้จะเป็นการยิงแสงวาดไปตามรูปร่างในแต่ละชั้นๆด้วยความเร็วสูง**

ทำให้เรานึกย้อนไปในสมัยที่เทคโนโลยียังไม่ได้มาไกลขนาดนี้ ที่นักโมเดลเลอร์นั้นจะต้องมานั่งขึ้นต้นแบบด้วยมือทั้งหมด ซึ่กินระยะเวลานานมากๆ และการลงทุนลงแรงกับคนกว่าจะได้ 1 ชิ้น ซึ่งหากผิดพลาดก็อาจจะต้องกลับมาแก้ไขใหม่ตั้งแต่ต้น

💁‍♂️แต่ในปัจจุบันเทคโนโลยการพิมพ์3มิติเข้ามาช่วยให้การทำงานนั้นสะดวกสบายและสร้างความน่าประทับใจทุกครั้งที่พิมพ์ชิ้นงานกันเลยทีเดียว นอกจากความเร็วในการขึ้นชิ้นงาน ความสวยงาม และที่สำคัญความเนี้ยบของงานที่ทุกอย่างแทบจะสมสูรณืแบบ 100% มากกว่าการทำชิ้นงานด้วยมืออย่างแน่นอน ช่วยร่นเวลาและผ่อนแรงในการทำงานได้มากทีเดียว แถมเป็นการสร้างมาตรฐานใหม่และการควบคุมคุณภาพของชิ้นงานให้มีประสิทธิภาพมากขึ้นในวงการ Product Design อีกด้วย

 

เรามาดูวิธีการผลิตต้นแบบอะไหล่ตั้งแต่ต้นยันจบอย่างละเอียดกันอีกทีเดียวกว่าครับ…เพื่อความเข้าใจในแต่ละ Process ว่าเค้าทำอะไรเพื่ออะไรและมีข้อสังเกตยังไงได้บ้าง

เลือกไฟล์ 3 มิติที่ต้องการพิมพ์ โดยให้เป็นไฟล์นามสกุล stl. หรือ obj.
เช็คดูรูปร่างและโครงสร้างของโมเดลว่าไม่มีจุดไหนเสียหาย
Import ไฟล์เข้าโปรแกรม 3D
ใช้คำสั่งเลือกบริเวณพื้นที่ที่ต้องการจะให้สัมผัสกับฐานพิมพ์ เพื่อให้สามารถขึ้นงานได้อย่างมันคง ซึ่งขึ้นอยู่กับแต่ละโมเดลว่าควรขึ้นยังไง
เจาะรูที่ชิ้นงาน 1-2 รู บริเวณใต้สุดของโมเดล เพื่อให้เวลาพิมพ์เสร็จ ตัวน้ำยาเรซิ่นที่เคลือบอยู่ข้างในไหลออกมา เป็นการประหยัดน้ำยาเรซิ่น และให้น้ำยาIPA ที่ไว้ล้างไหลออกมาหลังจากล้างเสร็จเรียบร้อย ป้องกันการแตกหักของชิ้นงานเมื่อนำไปอบหากยังมีน้ำยาเรซิ่นหลงเหลืออยู่ข้างใน
ตัวโปรแกรมเมื่อใช้คำสั่งเจาะรู โปรแกรมจะคำนวนและสร้างเนื้อที่เป็นรูให้เพื่อเวลาพิมพ์เสร็จสามารถนำมาประกบติดกันเหมือนเดิมได้
สร้าง Support แบบอัตโนมัติ
เช็คดูรอบๆตัวงานว่าซัพพอร์ตที่โปรแกรมคำนวนนั้นโอเคหรือยัง
เช็คความหนาผนังของชิ้นงาน แต่ละเลเยอร์
และอย่าลืมที่จะทำ Support ให้กับชิ้นที่ปิดรู
สร้างเส้นเพื่อเชื่อม Support ต่อกัน เพื่อให้เวลาพิมพ์งาน จะทำให้พิมพ์ซัพพอร์ทได้มั่นคงขึ้นและช่วยให้เป็นก้อนชิ้นงานเดียวกัน
เมื่อเช็คทุกอย่างเรียบร้อยแล้ว ทำการตั้งค่าต่างๆในการพิมพ์ และบันทึกไฟล์ออกมาพร้อมที่จะพิมพ์ต่อไป
เทน้ำยาเรซิ่นลงบนแท่นพิมพ์ให้เต็มแท็งค์
ตัวปาดผิวจะทำการปาดเพื่อเคลียร์ผิวหน้าของแท็งค์ไม่ให้มีฟองอากาศหรือเศษผงที่จะมารบกวนการพิมพ์งาน
ทำการอัพโหลดไฟล์ที่พร้อมพิมพ์งาน ลง Thumb Drive แล้วนำมาต่อกับเครื่องพิมพ์ เพื่อสั่งงานผ่านเครื่องพิมพ์ต่อไป
เมื่ออัพโหลดลงเครื่องพิมพ์แล้ว หน้าจอจะขึ้นเป็นพื้นที่พิมพ์งาน ซึ่งเราสามารถจัดวางโมเดลว่าจะให้พิมพ์บริเวณไหน มีประโยชน์ในกรณีมีพิมพ์ทีเดียวหลายชิ้นงาน เมื่อจัดวางได้ที่แล้วก็กดสั่งพิมพ์ได้เลย
ตัวเลเซอร์จะยิงและวิ่งตามแบบในแต่ละชั้นด้วยความเร็วสูง เหมือนกับการวาดภาพ
เมื่อเลเซอร์ยิงได้ครบทั้งชั้นแล้ว ตัวปาดนำยาเรซิ่นจะปาดผิวน้ำยา1รอบเพื่อเคลียร์พื้นผิวของแท็งค์ และแท่นพิมพ์จะค่อยๆเลื่อนลงทีละชั้นๆ เป็นการพิมพ์จากล่างขึ้นบน
เมื่อทำการพิมพ์เสร็จ ตัวแท่นพิมพ์จะเลื่อนขึ้นยกชิ้นงานขึ้นมาจากแท็งค์เรซิ่น

 

แท่นพิมพ์ยกชิ้นงานขึ้นจนเลยน้ำยาเรซิ่นแท็งค์ รอให้น้ำยาที่ยังหลงเหลือเคลือบบนชิ้นงานไหลลงมาก่อนที่จะทำการนำออก เพื่อเป็นการประหยัดน้ำยาเรซิ่นและเคลียร์พื้นผิวให้ได้มากที่สุดก่อนล้าง

👉เนื่องจากหากเรานำไปล้างทันที ตัว IPA ที่ล้างจะสกปรกเร็วขึ้น มีเรซิ่นผสมกับIPA อยู่มาก ทำให้การล้างชิ้นงานในครั้งถัดๆไปตัวชิ้นงานจะล้างไม่สะอาดเพราะพวกเศษๆเรซิ่นที่ผสมกับIPA อยู่จะไปเกาะกับชิ้นงานซึ่งจะเล็กจนเรามองไม่เห็น
แต่หากนำไปอบให้เซตตัวและแห้งแล้ว ตัวพื้นผิวชิ้นงานจะมีเศษเรซิ่นเกาะอยู่และต้องมาขัดเก็บทีหลังทำให้เสียเวลาและเสียแรงในการขัดแต่งงานหลายรอบ

เมื่อรอให้น้ำยาเรซิ่นที่เคลือบผิวงานไหลออกไปพอได้ที่แล้ว จึงทำการแซะชิ้นงานออกจากแท่นพิมพ์
จะเห็นได้ว่ามีส่วนที่เป็นเส้นเชื่อมซัพพอร์ตของแต่ละส่วนเข้าด้วยกัน เพื่อทำให้ชิ้นงานมั่นคงและเป็นก้อนเดียวกัน
ยกชิ้นงานออกจากเครื่องพิมพ์ โดยใช้ถาดรองกันน้ำยาเรซิ่นไหลเลอะเทอะ

ซึ่งต้องใส่ถุงเมือ และชุดป้องกัน IPA และที่สำคัญคือแว่นตาและหน้ากากกันแก๊สที่ต้องสวมอยู่ตลอดเวลาการทำงาน เนื่องจาก IPA เป็นแอลกอฮอร์บริสุทธิ มีกลิ่นฉุนมากๆ
ยิ่งใช้ในแท็คใหญ่ด้วยแล้วยิ่งฉุนรุนแรง ทำใหเกิดอันตรายแก่ผู้ใช้ได้ จึงควรที่จะต้องสวมเครื่องป้องกันอย่างแน่นหน้

นำมาล้างน้ำ IPA รอบแรก

👉ซึ่งต้องใส่ถุงเมือ และชุดป้องกัน IPA และที่สำคัญคือแว่นตาและหน้ากากกันแก๊สที่ต้องสวมอยู่ตลอดเวลาการทำงาน เนื่องจาก IPA เป็นแอลกอฮอร์บริสุทธิ มีกลิ่นฉุนมากๆ
ยิ่งใช้ในแท็คใหญ่ด้วยแล้วยิ่งฉุนรุนแรง ทำใหเกิดอันตรายแก่ผู้ใช้ได้ จึงควรที่จะต้องสวมเครื่องป้องกันอย่างแน่นหนา

นำมาล้างน้ำ IPA รอบสอง ในแท็คที่อยู่ข้างๆกัน
ใช้แปรงจุ่ม IPA และปาดเช็ดน้ำยาเรซิ่นที่เกาะบนผิวงานออก
ในขั้นตอนการล้างนี้สามารถดึงชิ้นส่วนซัพพอร์ตคร่าวๆออกระหว่างล้าง IPA ได้เลย เนื่องจากตัวซัพพอร์ตยังนิ่มและดึงออกได้ง่ายอยู่
จากนั้นจึงนำไปล้างน้ำรอบที่3หลังจากดึงซัพพอร์ตออกไปส่วนหนึ่งแล้ว ใช้แปรงปาดๆออกอีกรอบหนึ่งเพื่อความสะอาด เรียบร้อย
เป่าลมเข้าไปในรูเพื่อให้น้ำที่ขังอยู่ข้างในไหลออกมาให้ได้มากที่สุด
เป่าลมให้ทั่วชิ้นงานไล่น้ำ IPA ออกจากพวกร่อง รู เล็กๆที่เป็นรายละเอียดของชิ้นงานให้หมด จากนั้นนำไปตากผึ่งลมไว้ก่อนเพื่อให้IPA ระเหยออกให้หมดไป เช็ดงานให้สะอาดก่อนนำไปขัดแต่ง
ใช้ที่คีบเก็บงานภายในรูปที่เจาะไว้เพื่อไม่ให้มีเศษซัพพอร์ตติดอยู่ข้างใน
ขัดแต่งภาพนอกให้เรียบร้อยก่อนนำไปอบชิ้นงาน ซึ่งก่อนอบชิ้นงาน ตัวโมเดลค่อนข้างมีความแข็งแรงมากพออยู่แล้ว จึงไม่ต้องกังวลว่าโมเดลจะเสียหายระหว่างขัดแต่ง
ใช้กระดาษทรายขัดผิวให้เรียบร้อย
นำเข้าเตาอบ UV
ไฟ UV จะช่วยให้ชิ้นงานเซตตัวและแข็งโดยสมบูรณ์
เสร็จแล้วจึงติดชิ้นส่วนที่เจาะรูเข้าไว้ด้วยกันเหมือนเดิม
พ่นรองพื้นที่มีเนื้อสีเข้มข้นเพื่อเป็นการอุดรวย หรือ ตามด บนผิวชิ้นงาน เป็นการเช็คเนื่องจากสีเรซิ่นทำให้เราไม่สามารถมองเห้ฯร่องรอยที่เล็กได้
รอให้สีแห้งแล้วจึงขัดแต่งผิวงานอีกครั้ง
เมื่อขัดเรียบร้อย ผิวงานจะเผยให้เห็นสีที่เราพ่นอุดร่อยนั้นเด่นชัดขึ้นมา
จากนั้นจึงเริ่มพ่นสีจริงต่อ โดยพ่นสีพื้นให้ทั่ว สีพื้นจะเป็นสีที่มีเปอร์เซ็นเยอะกว่าสีอื่นของตัวชิ้นงาน ในภาพจะเห็นว่าเป็นการพ่นสีดำ เนื่องจากตัวงานจริงเป็นสีเงินเมทัลลิก การรองพื้นดำนั้นจะช่วยให้การพ่อนสีประเภทเมทัลลิกเงาขึ้นมาก
ใช้เทปติดกั้นพ่นสี
พ่นสีจริงทับกับเทปกั้นพ่นได้เลย รอสีแห้งแล้วจึงแกะเทปกั้นพ่นออก
จากนั้นตกแต่งด้วยวัสดุอื่นๆตามที่ออกแบบไว้ ได้ชิ้นงานสมจริง สวยงาม ออกมาเรียบร้อย

 

และมี Video การเปรียบเทียบระหว่างการ CNC และ 3D Printing ว่ามีความแตกต่างและน่าสนใจต่างกันอย่างไรบ้าง

จากที่กล่าวมาทั้งหมดนี้จะเห็นได้ว่า Process ในการทำงานนั้นมีหลายขั้นตอน กว่าจะได้ชิ้นงาน Prototype มา1ชิ้น แต่เนื่องจากการเข้ามาของเทคโนโลยีการพิมพ์ SLA แบบนี้นั้นทำให้การขึ้นต้นแบบเป็นไปได้อย่างรวดเร็ว ทำงานง่าย การทำโครงสร้างที่ซับซ้อนได้ไม่ยากซึ่งต่างจากการทำด้วยเครื่องจักรอื่นๆที่มีข้อจำกัดในการขึ้นรูปทรงที่ซับซ้อนมากมาย จึงไม่แปลกใจเลยถ้าอนาคตเราจะเห็นรถยนต์ที่ถูกสร้างด้วย 3D Printing ทั้งคัน

 

ทางเรา Print 3DD ก็มีเครื่อง SLA ขนาดใหญ่รองรับการขึ้นโมเดลทางอุตสาหกรรมให้ลองเลือกดูอีกด้วย

การมีเครื่องจักรที่สามารถลดต้นทุนเวลาและการทำงานที่ซับซ้อนได้ ก็คงคุ้มไม่ใช้น้อยจะที่ได้ใช้งานนะครับ….😁

หรือ หากใครสนใจเครื่องที่เล็กลงมาก็ขอแนะนำเป็น…

 

 

เรซินใหม่ 6 ชนิดจาก Formlabs

เรซินใหม่ 6 ชนิดจาก Formlabs

เมื่อวันที่ 30 มิถุนายนที่ผ่านมานี้ Formlabs ได้เปิดตัวเรซินใหม่ 6 ตัว โดยเป็นแบบ Bio-Compatible ถึง 5 ตัว ดังนี้

  • เรซินทางวิศวกรรมและการดูแลสุขภาพ
    1. Flexible 80A Resin (ปรับปรุงสูตรจาก Flexible Resin, ไม่เป็น biocompatible)
    2. BioMed Amber Resin
    3. BioMed Clear Resin
  • เรซินในงานทันตกรรม
    1. Custom Tray Resin
    2. Temporary CB Resin
    3. Dental LT Clear Resin V2 (ปรับปรุงสูตรจาก Dental LT Clear Resin)

Flexible 80A Resin เป็นการปรับปรุงสูตร Flexible Resin เดิมให้มีความแข็งแรง และความทนทานต่อการฉีกขาดที่ดีขึ้นโดยที่ไม่ต้องยุ่งยาก Flexible 80A Resin เหมาะสำหรับชิ้นส่วนที่ต้องทนต่อการบิด ดัดงอ และการกดอัด ด้วยระดับความยืดหยุ่น Durometer 80A Shore มันสามารถจำลองความยืดหยุ่นเทียบเท่ายางหรือ TPU

Flexible และ Elastic Resins สามารถใช้ในการขึ้นรูปชิ้นส่วนซิลิโคน ยูรีเทน และยาง

 

BioMed Amber Resin เป็นวัสดุเกรดทางการแพทย์ที่มีความแกร่ง และแข็งแรงในทางการแพทย์สำหรับผลิตชิ้นส่วนที่ต้องสัมผัสกับผิว และเบื่อบุช่องปากในระยะสั้น ๆ เหมาะสำหรับการผลิตชิ้นส่วนที่แข็งแรงและมั่นคงเช่น เกลียวที่ใช้งานได้จริง BioMed Clear Resin เป็นวัสดุที่ได้รับการรับรองจาก USP Class VI สำหรับการใช้งานทางชีวภาพที่ต้องสัมผัสกับผิวหนัง หรือเยื่อบุในระยะยาว ชิ้นส่วนที่พิมพ์ในวัสดุนี้สามารถใช้วิธีการฆ่าเชื้อทั่วไปได้ และเหมาะสำหรับการผลิตชิ้นส่วนที่คงทน และมีการดูดซึมน้ำต่ำ

BioMed Resins จาก Formlabs เป็นวัสดุชีวภาพที่ได้มาตรฐาน ISO 13485

 

Custom Tray Resin จาก Formlabs Dental เป็นวัสดุที่เข้ากันได้ทางชีวภาพ ที่สามารถพิมพ์ได้อย่างรวดเร็ว ในการทำถาดพิมพ์ปาก โดยจะพิมพ์ที่ระดับความละเอียด 200 ไมครอน ซึ่งจะสามารถลดเวลา แรงงาน และได้ปริมาณงานที่สูงขึ้น

หากต้องการทำถาดพิมพ์ปากสำหรับรากฟันเทียม ครอบฟัน สะพานฟัน และอื่น ๆ Custom Tray Resin เป็นอีกทางเลือกหนึ่งในการเพิ่มประสิทธิภาพการทำงานได้

 

Temporary CB Resin เป็นเรซินชนิด Class IIa ที่พัฒนาขึ้นโดยความร่วมมือระหว่าง @Formlabs Dental และ BEGO การใช้งานวัสดุนี้เหมาะสำหรับการพิมพ์สามมิติของครอบฟัน และสะพานฟันชนิดชั่วคราว การบูรณะฟันที่ผุ บิ่น หรือร้าวได้ทั้งแบบอินเลย์ และออนเลย์ และการทำฟันปลอมรูปแบบใหม่ (Veneer)

Temporary CB Resin จาก BEGO และ @Formlabs Dental สามารถทำสะพานฟันได้ถึงเจ็ดซี่ และมีให้เลือก 4 เฉดสี ตามระบบ VITA วัสดุนี้สามารถใช้งานได้นานถึง 12 เดือน Dental LT Clear Resin (V2) เป็นวัสดุที่เข้ากันได้ในทางชีวภาพในระยะยาว ที่ปรับปรุงสูตรขึ้นมาใหม่เป็นรุ่นที่สอง มีคุณสมบัติที่ดีและประหยัดในการทำเฝือกสบฟัน (Occlusal splint) และ occlusal guards ด้วยตัวเองทีมีความทนทาน และทนต่อการแตกหักได้ดี เรซินนี้มีสีใส และสามารถขัดให้ใสยิ่งขึ้นได้อีก มันยังมีความทนทานต่อการเปลี่ยนสีตามระยะเวลาอีกด้วย